55 resultados para Sigel, FranzSigel, FranzFranzSigel
Resumo:
CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.
Resumo:
Rimonabant (SR141716) and the structurally related AM251 are widely used in pharmacological experiments as selective cannabinoid receptor CB(1) antagonists / inverse agonists. Concentrations of 0.5-10 µM are usually applied in in vitro experiments. We intended to show that these drugs did not act at GABA(A) receptors but found a significant positive allosteric modulation instead.
Resumo:
The major isoforms of the GABAA (gamma-aminobutyric acid type A) receptor are composed of two alpha, two beta and one gamma subunit. Thus alpha and beta subunits occur twice in the receptor pentamer. As it is well documented that different isoforms of alpha and beta subunits can co-exist in the same pentamer, the question is raised whether the relative position of a subunit isoform affects the functional properties of the receptor. We have used subunit concatenation to engineer receptors of well-defined subunit arrangement to study this question. Although all five subunits may be concatenated, we have focused on the combination of triple and dual subunit constructs. We review here what is known so far on receptors containing simultaneously alpha1 and alpha6 subunits and receptors containing beta1 and beta2 subunits. Subunit concatenation may not only be used to study receptors containing two different subunit isoforms, but also to introduce a point mutation into a defined position in receptors containing either two alpha or beta subunits, or to study the receptor architecture of receptors containing unconventional GABAA receptor subunits. Similar approaches may be used to characterize other members of the pentameric ligand-gated ion channel family, including nicotinic acetylcholine receptors, glycine receptors and 5-HT3 (5-hydroxytryptamine) receptors.
Resumo:
We show that the five subunits of a gamma-aminobutyric acid type A receptor (GABA(A) receptor) can be concatenated to yield a functional receptor. This concatenated receptor alpha(1)-beta(2)-alpha(1)-gamma(2)-beta(2) has the advantage of a known subunit arrangement. Most of its functional properties are not significantly different from a receptor formed by individual subunits. Extent of expression amounted to about 40% of that of non-concatenated receptors in Xenopus oocytes, after injection of oocytes with comparable amounts of cRNA coding for concatenated and non-concatenated receptors. The ability to express receptors consisting of five subunits enables detailed studies of GABA(A) receptor subtype selective compounds.
Resumo:
The formation of alpha1beta2gamma2epsilon receptors suggests that the epsilon subunit does not displace the single gamma2 subunit in alpha1beta2gamma2 receptors. Thus, epsilon must replace alpha and/or beta subunit(s) if the pentameric receptor structure is to be preserved. To assess the potential for which subunit is replaced in alphabetaepsilon and alphabetagammaepsilon receptors we analyzed the assembly and functional expression of the epsilon subunit with respect to alpha1, beta2 and gamma2 subunits. Using concatenated subunits, we have determined that epsilon is capable of substituting for either (but not both) of the alpha subunits, one of the beta subunits, and possibly the gamma2 subunit. However, the most likely sites at which the epsilon subunit may contribute to receptor function appears to be at position 1 (replaces alpha1) in alphabetagammaepsilon (varepsilon-beta2-alpha1-beta2-gamma2) receptors, or at position 4 (replaces beta2) in alphabetaepsilon (alpha1-beta2-alpha1-varepsilon-beta2) receptors. In both cases, it appears that only a single GABA binding site is present.
Resumo:
Benzodiazepines are widely used drugs exerting sedative, anxiolytic, muscle relaxant, and anticonvulsant effects by acting through specific high affinity binding sites on some GABA(A) receptors. It is important to understand how these ligands are positioned in this binding site. We are especially interested here in the conformation of loop A of the alpha(1)beta(2)gamma(2) GABA(A) receptor containing a key residue for the interaction of benzodiazepines: alpha(1)H101. We describe a direct interaction of alpha(1)N102 with a diazepam- and an imidazobenzodiazepine-derivative. Our observations help to better understand the conformation of this region of the benzodiazepine pocket in GABA(A) receptor.
Resumo:
Benzodiazepines are widely used drugs. They exert sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects and act through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid type A (GABA(A)) receptor. Ligands of the benzodiazepine-binding site are classified into three groups depending on their mode of action: positive and negative allosteric modulators and antagonists. To rationally design ligands of the benzodiazepine site in different isoforms of the GABA(A) receptor, we need to understand the relative positioning and overlap of modulators of different allosteric properties. To solve these questions, we used a proximity-accelerated irreversible chemical coupling reaction. GABA(A) receptor residues thought to reside in the benzodiazepine-binding site were individually mutated to cysteine and combined with a cysteine-reactive benzodiazepine site ligand. Direct apposition of reaction partners is expected to lead to a covalent reaction. We describe here such a reaction of predominantly alpha(1)H101C and also three other mutants (alpha(1)G157C, alpha(1)V202C, and alpha(1)V211C) with an Imid-NCS derivative in which a reactive isothiocyanate group (-NCS) replaces the azide group (-N(3)) in the partial negative allosteric modulator Ro15-4513. Our results show four contact points of imidazobenzodiazepines with the receptor, alpha(1)H101C being shared by classical benzodiazepines. Taken together with previous data, a similar orientation of these ligands within the benzodiazepine-binding pocket may be proposed.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
Cation-transporting P-type ATPases show a high degree of structural and functional homology. Nevertheless, for many members of this large family, the molecular mechanism of transport is unclear; namely, whether transport is electrogenic or not and if countertransport is involved remains to be established. In a few well-studied cases such as the Na(+)-K(+)-ATPase, plasma membrane Ca(2+) ATPase (PMCA) and sarcoplasmic reticulum Ca(2+) ATPase (SERCA) countertransport has been clearly demonstrated. New data based on the crystal structure of SERCA now strongly indicate that countertransport could be mandatory for all P-type ATPases. This concept should be verified for other known and for all newly characterized P-type ATPases.
Resumo:
We describe two Chinese families with a mild form of the myotonia congenita due to novel chloride channel (ClCN1) mutations. In one case, heterozygous I553F and H555N mutations were found. The patient shared the I553F mutation with his healthy father, and his mother had a history of mild myotonia when she was younger. In another family, autosomal dominant myotonia congenita was due to a L844F change. The physiological effects of the mutations were examined by using the two-electrode voltage-clamp technique after expression of the channels in Xenopus oocytes. All mutations drastically shifted the voltage required for half-maximal activation, more under conditions mimicking the homozygous situation, than under conditions mimicking the heterozygous situation. The larger effect was seen in the compound heterozygous situation combining the I553F and the H555N mutations. Our data suggest that myotonia congenita caused by CLCN1 mutations in Chinese have similar variable features to those found in the West.
Resumo:
Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.
Resumo:
Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.
Resumo:
Many membrane proteins, including the GABA(A) [GABA (gamma-aminobutyric acid) type A] receptors, are oligomers often built from different subunits. As an example, the major adult isoform of the GABA(A) receptor is a pentamer built from three different subunits. Theoretically, co-expression of three subunits may result in many different receptor pentamers. Subunit concatenation allows us to pre-define the relative arrangement of the subunits. This method may thus be used to study receptor architecture, but also the nature of binding sites. Indeed, it made possible the discovery of a novel benzodiazepine site. We use here subunit concatenation to study delta-subunit-containing GABA(A) receptors. We provide evidence for the formation of different functional subunit arrangements in recombinant alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors. As with all valuable techniques, subunit concatenation has also some pitfalls. Most of these can be avoided by carefully titrating and minimizing the length of the linker sequences joining the two linked subunits and avoiding inclusion of the signal sequence of all but the N-terminal subunit of a multi-subunit construct. Maybe the most common error found in the literature is that low expression can be overcome by simply overloading the expression system with genetic information. As some concatenated constructs result by themselves in a low level of expression, this erroneous assembly leading to receptor function may be promoted by overloading the expression system and leads to wrong conclusions.
Resumo:
GABA(A) receptors are the major inhibitory neurotransmitter receptors in the brain. Some of them are targets of benzodiazepines that are widely used in clinical practice for their sedative/hypnotic, anxiolytic, muscle relaxant and anticonvulsant effects. In order to rationally separate these different drug actions, we need to understand the interaction of such compounds with the benzodiazepine-binding pocket. With this aim, we mutated residues located in the benzodiazepine-binding site individually to cysteine. These mutated receptors were combined with benzodiazepine site ligands carrying a cysteine reactive group in a defined position. Proximal apposition of reaction partners will lead to a covalent reaction. We describe here such proximity-accelerated chemical coupling reactions of alpha(1)S205C and alpha(1)T206C with a diazepam derivative modified at the C-3 position with a reactive isothiocyanate group (-NCS). We also provide new data that identify alpha(1)H101C and alpha(1)N102C as exclusive sites of the reaction of a diazepam derivative where the -Cl atom is replaced by a -NCS group. Based on these observations we propose a relative positioning of diazepam within the benzodiazepine-binding site of alpha(1)beta(2)gamma(2) receptors.