937 resultados para Sierpinski carpet fractal geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal geometry would appear to offer promise for new insight on water transport in unsaturated soils, This study was conducted to evaluate possible fractal influence on soil water diffusivity, and/or the relationships from which it arises, for several different soils, Fractal manifestations, consisting of a time-dependent diffusion coefficient and anomalous diffusion arising out of fractional Brownian motion, along with the notion of space-filling curves were gleaned from the literature, It was found necessary to replace the classical Boltzmann variable and its time t(1/2) factor with the basic fractal power function and its t(n) factor, For distinctly unsaturated soil water content theta, exponent n was found to be less than 1/2, but it approached 1/2 as theta approached its sated value, This function n = n(theta), in giving rise to a time-dependent, anomalous soil water diffusivity D, was identified with the Hurst exponent H of fractal geometry, Also, n approaching 1/2 at high water content is a behavior that makes it possible to associate factal space filling with soil that approaches water saturation, Finally, based on the fractally interpreted n = n(theta), the coalescence of both D and 8 data is greatly improved when compared with the coalescence provided by the classical Boltzmann variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal geometry is relevant to understand and explain many natural complex geometries. Using the fractal set concept (fig. 1) many authors have shown that shorelines, landscapes and fractures follow a fractal behaviour. These authors have developed many methods, including the Cantor's Dust Method (CDM) (VELDE et al., 1992), a linear method of analysis adapted for the determination of two-dimensional phenomena. The Itu Granitic Complex (IGC) is a wide granitic body that that crops out at northwest of Cabreuva City, Sao Paulo State (fig. 2) and was affected in its south border by dextral Itu-Jundiuvira Shear Zone (IJSZ) that produced fractures and alignment of feldspars crystals. The different types of fractures (compression, distension and shear) was discriminated from the relationship between them and medium stress ellipsoid of IJSZ (fig. 3). A modified version of CDM was used to study a possible fractal behaviour of the fracture traces in the south border of IGC. The main modification was the use only one direction of analysis (NE/SW). Four parallel profiles were traced with lengths between 9.75km and 12.75km, each one them was divided into six classes of segments (x) with 375m, 500m, 750m, 1.000m, 1.250m and 1.500m. The parameter (N) is provided by he rate between profile length and choiced segment. For each x the number of intervals is counted with at least one event (fracture intersection) which supplied the parameter(n). The n/N rate provide the parameter (p) that represents the relationship between frequency of events and x. And finally the parameters p and x were plotted in a logarithmic graphics (fig. 4) that provide a line with such a declivity (1) which is related to effective dimension (De). In theory, granitics bodies are isotropics and they would have a same fractal dimension in all segments, but the logarithmic graphics (fig. 4) show that fracture traces of IGC has a fractal behaviour in a restrict interval. This fact probably occurs from the passage of a ductil-brittle deformation condition to a more brittle deformation condition of IGC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Geometria Fractal é um ramo novo da Matemática que vem sendo estudado desde sua descoberta nos anos sessenta por Benoit Mandelbrot. Por se tratar de uma geometria essencialmente intuitiva, muito se tem comentado a respeito da possibilidade de sua introdução ainda no Ensino Fundamental e Médio de nossas escolas. Assim, um grande número de atividades envolvendo Geometria Fractal foram e ainda estão sendo desenvolvidas com o intuito de tornar o conteúdo da Matemática curricular mais significativo ao aluno. Entretanto, muitas carecem de um estudo mais aprofundado no que tange ao seu verdadeiro grau de eficácia. Para tentar vislumbrar até que ponto estas atividades podem se caracterizar como um recurso didático válido, elaboramos e ministramos um curso sobre Geometria Fractal para onze alunos do 3 ano do Ensino Médio de uma escola pública estadual na cidade de Santarém-Pa. O curso consistia de uma parte teórica sobre o assunto e algumas atividades selecionadas de tal forma que estas pudessem abranger alguns tópicos da Matemática curricular já visto por eles em suas trajetórias escolares. Aplicamos antes do curso um pré-teste e no final um pós-teste para avaliar a compreensão dos assuntos abordados. Os resultados obtidos mostram uma evolução tanto quantitativa, quanto qualitativa na (re)apropriação dos conceitos matemáticos trabalhados durante o curso. O estudo ainda sugere que a Geometria Fractal pôde proporcionar aos alunos uma relação mais forte entre os saberes do cotidiano e o escolar, além de ter proporcionado uma visão dinâmica da Matemática como uma ciência que avança, e não como um corpo de conhecimentos prontos e acabados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rochas contendo metálicos disseminados ou partículas de argila em ambiente natural onde soluções eletrolíticas normalmente preenchem os poros das rochas, exibem um tipo de polarização em baixas freqüências conhecido como polarização induzida. Nesta tese foi desenvolvido um novo modelo para descrever o fenômeno de polarização das rochas, não apenas em baixas freqüências, mas compreendendo todo o espectro eletromagnético, possível de utilização na prospecção geoelétrica. Este novo modelo engloba a maioria dos modelos utilizados até o momento como casos especiais, além de superar as limitações dos mesmos. Seu circuito analógico inclui uma impedância não linear do tipo r (iwtf)-n que simula o efeito das superfícies rugosas das interfaces entre os grãos bloqueadores (partículas metálicas e/ou de argilas) e o eletrólito. A impedância de Warburg generalizada está em série com a resistência dos grãos bloqueadores da passagem de corrente e em paralelo com a impedância da dupla camada associada a essas interfaces. Esta combinação está em série com a resistência do eletrólito nas passagens dos poros bloqueados. Os canais não bloqueados são representados por uma resistência que corresponde à resistividade normal CC da rocha. A combinação desta resistência com a capacitância "global" da rocha é finalmente conectada em paralelo ao resto do circuito mencionado acima. Os parâmetros deste modelo incluem a resistividade CC (p0), a cargueabilidade (m), três tempos de relaxação (t, Tf and T2), um fator de resistividade de grãos (δr), e o expoente de freqüência (η). O tempo de relaxação fractal (Tf), e o expoente de frequencia (η) estão relacionados à geometria fractal das interfaces rugosas entre os minerais condutivos (grãos metálicos e/ou partículas de argila bloqueando os canais dos poros) e o eletrólito. O tempo de relaxação (T) é um resultado da relaxação em baixa freqüência das duplas camadas elétricas formadas nas interfaces eletrólito-cristais, enquanto (T0) é o tempo de relaxação macroscópico da amostra como um todo. O fator de resistividade dos grãos (δr) relaciona a resistividade dos grãos condutivos com o valor de resistividade CC da rocha. A resistividade CC da rocha (p0), e δr estão relacionados à porosidade, à condutividade do eletrólito e às relações mineralógicas entre a matriz e os grãos condutivos. O modelo foi testado sobre um intervalo largo de freqüências contra dados experimentais de amplitude e fase da resistividade bem como para dados de constante dielétrica complexa. Os dados utilizados neste trabalho foram obtidos a partir da digitalização de dados experimentais publicados, obtidos por diversos autores e englobando amostras de rochas sedimentares, ígneas e metam6rficas. É mostrado neste trabalho que os parâmetros deste modelo permitem identificar diferenças texturais e mineralógicas nas rochas. Bote modelo foi introduzido, primeiramente, como propriedade intrínseca de um semiespaço homogêneo sendo demonstrado, neste trabalho, que a resposta observada em superfície reflete as propriedades intrínsecas do meio polarizável, sendo o acoplamento eletromagnético desprezível em freqüências menores que 104 Hz. Em seguida, o meio polarizável foi embebido em um pacote de N camadas sendo demonstrado que os parâmetros fractais do meio polarizável podem ser obtidos do levantamento em superfície para diferentes espessuras dessa camada. Isto justifica a utilização pura e simples de modelos de polarização desenvolvidos para amostras em laboratório para ajustar dados de campo, o que vem sendo feito sem uma justificativa bem fundamentada. Estes resultados demonstram a importância para a prospecção geolétrica do modelo proposto nesta tese.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Saúde Coletiva - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matemática em Rede Nacional - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New concepts on porosity appraisal in ancient and modern construction materials. The role of Fractal Geometry on porosity characterization and transport phenomena. This work studied the potential of Fractal Geometry to the characterization of porous materials. Besides the descriptive aspects of the pore size distribution, the fractal dimensions have led to the development of rational relations for the prediction of permeability coefficients to fluid and heat transfer. The research considered natural materials used in historical buildings (rock and earth) as well as currently employed materials as hydraulic cement and technologically advanced materials such as silicon carbide or YSZ ceramics. The experimental results of porosity derived from the techniques of mercury intrusion and from the image analysis. Data elaboration was carried out according to established procedures of Fractal Geometry. It was found that certain classes of materials are clearly fractal and respond to simple patterns such as Sierpinski and Menger models. In several cases, however, the fractal character is not recognised because the microstructure of the material is based on different phases at different dimensional scales, and in consequence the “fractal dimensions” calculated from porosimetric data do not come within the standard range (less than 3). Using different type and numbers of fractal units is possible, however, to obtain “virtual” microstructures that have the fraction of voids and pore size distribution equivalent with the experimental ones for almost any material. Thus it was possible to take the expressions for the permeability and the thermal conduction which does not require empirical “constants”, these expressions have also provided values that are generally in agreement with the experimental available data. More problematic has been the fractal discussion of the geometry of the rupture of the material subjected to mechanical stress both external and internal applied. The results achieved on these issues are qualitative and prone to future studies. Keywords: Materials, Microstructure, Porosity, Fractal Geometry, Permeability, Thermal conduction, Mechanical strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil structure plays an important role in flow and transport phenomena, and a quantitative characterization of the spatial heterogeneity of the pore space geometry is beneficial for prediction of soil physical properties. Morphological features such as pore-size distribution, pore space volume or pore?solid surface can be altered by different soil management practices. Irregularity of these features and their changes can be described using fractal geometry. In this study, we focus primarily on the characterization of soil pore space as a 3D geometrical shape by fractal analysis and on the ability of fractal dimensions to differentiate between two a priori different soil structures. We analyze X-ray computed tomography (CT) images of soils samples from two nearby areas with contrasting management practices. Within these two different soil systems, samples were collected from three depths. Fractal dimensions of the pore-size distributions were different depending on soil use and averaged values also differed at each depth. Fractal dimensions of the volume and surface of the pore space were lower in the tilled soil than in the natural soil but their standard deviations were higher in the former as compared to the latter. Also, it was observed that soil use was a factor that had a statistically significant effect on fractal parameters. Fractal parameters provide useful complementary information about changes in soil structure due to changes in soil management. Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218348X14400118?queryID=%24%7BresultBean.queryID%7D&

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to improve students’ learning by designing a teaching model that seeks to increase student motivation to acquire new knowledge. To design the model, the methodology is based on the study of the students’ opinion on several aspects we think importantly affect the quality of teaching (such as the overcrowded classrooms, time intended for the subject or type of classroom where classes are taught), and on our experience when performing several experimental activities in the classroom (for instance, peer reviews and oral presentations). Besides the feedback from the students, it is essential to rely on the experience and reflections of lecturers who have been teaching the subject several years. This way we could detect several key aspects that, in our opinion, must be considered when designing a teaching proposal: motivation, assessment, progressiveness and autonomy. As a result we have obtained a teaching model based on instructional design as well as on the principles of fractal geometry, in the sense that different levels of abstraction for the various training activities are presented and the activities are self-similar, that is, they are decomposed again and again. At each level, an activity decomposes into a lower level tasks and their corresponding evaluation. With this model the immediate feedback and the student motivation are encouraged. We are convinced that a greater motivation will suppose an increase in the student’s working time and in their performance. Although the study has been done on a subject, the results are fully generalizable to other subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is the in vivo technique most commonly employed to characterize changes in brain structures. The conventional MRI-derived morphological indices are able to capture only partial aspects of brain structural complexity. Fractal geometry and its most popular index, the fractal dimension (FD), can characterize self-similar structures including grey matter (GM) and white matter (WM). Previous literature shows the need for a definition of the so-called fractal scaling window, within which each structure manifests self-similarity. This justifies the existence of fractal properties and confirms Mandelbrot’s assertion that "fractals are not a panacea; they are not everywhere". In this work, we propose a new approach to automatically determine the fractal scaling window, computing two new fractal descriptors, i.e., the minimal and maximal fractal scales (mfs and Mfs). Our method was implemented in a software package, validated on phantoms and applied on large datasets of structural MR images. We demonstrated that the FD is a useful marker of morphological complexity changes that occurred during brain development and aging and, using ultra-high magnetic field (7T) examinations, we showed that the cerebral GM has fractal properties also below the spatial scale of 1 mm. We applied our methodology in two neurological diseases. We observed the reduction of the brain structural complexity in SCA2 patients and, using a machine learning approach, proved that the cerebral WM FD is a consistent feature in predicting cognitive decline in patients with small vessel disease and mild cognitive impairment. Finally, we showed that the FD of the WM skeletons derived from diffusion MRI provides complementary information to those obtained from the FD of the WM general structure in T1-weighted images. In conclusion, the fractal descriptors of structural brain complexity are candidate biomarkers to detect subtle morphological changes during development, aging and in neurological diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.