929 resultados para Side view gait recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass, Islamic, Ayyubid; 9 9/64 in.x 5 63/64 in.; glass,gold, gilt and enameled

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filmed from the original in the University of Virginia Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel bolt-on module capable of boosting the robustness of various single compact 2D gait representations. Gait recognition is negatively influenced by covariate factors including clothing and time which alter the natural gait appearance and motion. Contrary to traditional gait recognition, our bolt-on module remedies this by a dedicated covariate factor detection and removal procedure which we quantitatively and qualitatively evaluate. The fundamental concept of the bolt-on module is founded on exploiting the pixel-wise composition of covariate factors. Results demonstrate how our bolt-on module is a powerful component leading to significant improvements across gait representations and datasets yielding state-of-the-art results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel skeleton-based approach to gait recognition using our Skeleton Variance Image. The core of our approach consists of employing the screened Poisson equation to construct a family of smooth distance functions associated with a given shape. The screened Poisson distance function approximation nicely absorbs and is relatively stable to shape boundary perturbations which allows us to define a rough shape skeleton. We demonstrate how our Skeleton Variance Image is a powerful gait cycle descriptor leading to a significant improvement over the existing state of the art gait recognition rate.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis se centra en la identificación de personas a través de la forma de caminar. El problema del reconocimiento del paso ha sido tratado mediante diferentes enfoques, en los dominios 2D y 3D, y usando una o varias vistas. Sin embargo, la dependencia con respecto al punto de vista, y por tanto de la trayectoria del sujeto al caminar sigue siendo aún un problema abierto. Se propone hacer frente al problema de la dependencia con respecto a la trayectoria por medio de reconstrucciones 3D de sujetos caminando. El uso de reconstrucciones varias ventajas que cabe destacar. En primer lugar, permite explotar una mayor cantidad de información en contraste con los métodos que extraen los descriptores de la marcha a partir de imágenes, en el dominio 2D. En segundo lugar, las reconstrucciones 3D pueden ser alineadas a lo largo de la marcha como si el sujeto hubiera caminado en una cinta andadora, proporcionando así una forma de analizar el paso independientemente de la trayectoria seguida. Este trabajo propone tres enfoques para resolver el problema de la dependencia a la vista: 1. Mediante la utilización de reconstrucciones volumétricas alineadas. 2. Mediante el uso de reconstrucciones volumétricas no alineadas. 3. Sin usar reconstrucciones. Se proponen además tres tipos de descriptores. El primero se centra en describir el paso mediante análisis morfológico de los volúmenes 3D alineados. El segundo hace uso del concepto de entropa de la información para describir la dinámica del paso humano. El tercero persigue capturar la dinámica de una forma invariante a rotación, lo cual lo hace especialmente interesante para ser aplicado tanto en trayectorias curvas como rectas, incluyendo cambios de dirección. Estos enfoques han sido probados sobre dos bases de datos públicas. Ambas están especialmente diseñadas para tratar el problema de la dependencia con respecto al punto de vista, y por tanto de la dependencia con respecto a la trayectoria. Los resultados experimentales muestran que para el enfoque basado en reconstrucciones volumétricas alineadas, el descriptor del paso basado en entropa consigue los mejores resultados, en comparación con métodos estrechamente relacionados del Estado del Arte actual. No obstante, el descriptor invariante a rotación consigue una tasa de reconocimiento que supera a los métodos actuales sin requerir la etapa previa de alineamiento de las reconstrucciones 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a representation of the dynamics of human walking action for the purpose of person identification and classification by gait appearance. Our gait representation is based on simple features such as moments extracted from video silhouettes of human walking motion. We claim that our gait dynamics representation is rich enough for the task of recognition and classification. The use of our feature representation is demonstrated in the task of person recognition from video sequences of orthogonal views of people walking. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times, and under varying lighting environments. In addition, preliminary results are shown on gender classification using our gait dynamics features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.