983 resultados para Short circuit faults
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This project concentrates on the Low Voltage Ride Through (LVRT) capability of Doubly Fed Induction Generator (DFIG) wind turbine. The main attention in the project is, therefore, drawn to the control of the DFIG wind turbine and of its power converter and to the ability to protect itself without disconnection during grid faults. It provides also an overview on the interaction between variable speed DFIG wind turbines and the power system subjected to disturbances, such as short circuit faults. The dynamic model of DFIG wind turbine includes models for both mechanical components as well as for all electrical components, controllers and for the protection device of DFIG necessary during grid faults. The viewpoint of this project is to carry out different simulations to provide insight and understanding of the grid fault impact on both DFIG wind turbines and on the power system itself. The dynamic behavior of DFIG wind turbines during grid faults is simulated and assessed by using a transmission power system generic model developed and delivered by Transmission System Operator in the power system simulation toolbox Digsilent, Matlab/Simulink and PLECS.
Resumo:
Os motores de indução desempenham um importante papel na indústria, fato este que destaca a importância do correto diagnóstico e classificação de falhas ainda em fase inicial de sua evolução, possibilitando aumento na produtividade e, principalmente, eliminando graves danos aos processos e às máquinas. Assim, a proposta desta tese consiste em apresentar um multiclassificador inteligente para o diagnóstico de motor sem defeitos, falhas de curto-circuito nos enrolamentos do estator, falhas de rotor e falhas de rolamentos em motores de indução trifásicos acionados por diferentes modelos de inversores de frequência por meio da análise das amplitudes dos sinais de corrente de estator no domínio do tempo. Para avaliar a precisão de classificação frente aos diversos níveis de severidade das falhas, foram comparados os desempenhos de quatro técnicas distintas de aprendizado de máquina; a saber: (i) Rede Fuzzy Artmap, (ii) Rede Perceptron Multicamadas, (iii) Máquina de Vetores de Suporte e (iv) k-Vizinhos-Próximos. Resultados experimentais obtidos a partir de 13.574 ensaios experimentais são apresentados para validar o estudo considerando uma ampla faixa de frequências de operação, bem como regimes de conjugado de carga em 5 motores diferentes.
Resumo:
Power converters are a key, but vulnerable component in switched reluctance motor (SRM) drives. In this paper, a new fault diagnosis scheme for SRM converters is proposed based on the wavelet packet decomposition (WPD) with a dc-link current sensor. Open- and short-circuit faults of the power switches in an asymmetrical half-bridge converter are analyzed in details. In order to obtain the fault signature from the phase currents, two pulse-width modulation signals with phase shift are injected into the lower-switches of the converter to extract the excitation current, and the WPD algorithm is then applied to the detected currents for fault diagnosis. Moreover, a discrete degree of the wavelet packet node energy is chosen as the fault coefficient. The converter faults can be diagnosed and located directly by determining the changes in the discrete degree from the detected currents. The proposed scheme requires only one current sensor in the dc link, while conventional methods need one sensor for each phase or additional detection circuits. The experimental results on a 750-W three-phase SRM are presented to confirm the effectiveness of the proposed fault diagnosis scheme.
Resumo:
Switched reluctance motor (SRM) drives are one competitive technology for traction motor drives. This paper proposes a novel and flexible SRM fault-tolerant topology with fault diagnosis, fault tolerance, and advanced control functions. The converter is composed of a single-phase bridge and a relay network, based on the traditional asymmetrical half-bridge driving topology. When the SRM-driving system is subjected to fault conditions including open-circuit and short-circuit faults, the proposed converter starts its fault-diagnosis procedure to locate the fault. Based on the relay network, the faulty part can be bypassed by the single-phase bridge arm, while the single-phase bridge arm and the healthy part of the converter can form a fault-tolerant topology to sustain the driving operation. A fault-tolerant control strategy is developed to decrease the influence of the fault. Furthermore, the proposed fault-tolerant strategy can be applied to three-phase 12/8 SRM and four-phase 8/6 SRM. Simulation results in MATLAB/Simulink and experiments on a three-phase 12/8 SRM and a four-phase 8/6 SRM validate the effectiveness of the proposed strategy, which may have significant economic implications in traction drive systems.
Resumo:
A novel methodology to assess the risk of power transformer failures caused by external faults, such as short-circuit, taking the paper insulation condition into account, is presented. The risk index is obtained by contrasting the insulation paper condition with the probability that the transformer withstands the short-circuit current flowing along the winding during an external fault. In order to assess the risk, this probability and the value of the degree of polymerization of the insulating paper are regarded as inputs of a type-2 fuzzy logic system (T2-FLS), which computes the fuzzy risk level. A Monte Carlo simulation has been used to find the survival function of the currents flowing through the transformer winding during a single-phase or a three-phase short-circuit. The Roy Billinton Test System and a real power system have been used to test the results. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Power line modelling has become an interesting research area in recent years as a result of advances in the power line distribution network system. Extensive knowledge about the power line cable characteristics can be implemented in a software algorithm in a modern broadband power-line communication modem. In this study, a novel approach for modelling power line cables (AMCMK) based on the broadband impedance spectroscopy (BIS) and transmission line matrix (TLM) techniques is recommended in characterizing a healthy cable and the various faults associated with low-voltage cables for both open and short circuit situation. Models for different cable conditions are developed and tuned, which include six models for both healthy and faulty cables situations. The models are on the basis of impedance response analysis of the cable. The resulting spectra from the simulations are also cross-correlated to determine the degree of similarities between the healthy cable spectra and their respective faulty spectra.
Resumo:
In some applications like fault analysis, fault location, power quality studies, safety analysis, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of particular interest. In order to investigate effects of neutrals and system grounding on the operation of the distribution feeders with faults, in this research a hybrid short circuit algorithm is generalized. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. Results obtained from several case studies using IEEE 34-node test network are presented and discussed.
Resumo:
Power transformers are key components of the power grid and are also one of the most subjected to a variety of power system transients. The failure of a large transformer can cause severe monetary losses to a utility, thus adequate protection schemes are of great importance to avoid transformer damage and maximize the continuity of service. Computer modeling can be used as an efficient tool to improve the reliability of a transformer protective relay application. Unfortunately, transformer models presently available in commercial software lack completeness in the representation of several aspects such as internal winding faults, which is a common cause of transformer failure. It is also important to adequately represent the transformer at frequencies higher than the power frequency for a more accurate simulation of switching transients since these are a well known cause for the unwanted tripping of protective relays. This work develops new capabilities for the Hybrid Transformer Model (XFMR) implemented in ATPDraw to allow the representation of internal winding faults and slow-front transients up to 10 kHz. The new model can be developed using any of two sources of information: 1) test report data and 2) design data. When only test-report data is available, a higher-order leakage inductance matrix is created from standard measurements. If design information is available, a Finite Element Model is created to calculate the leakage parameters for the higher-order model. An analytical model is also implemented as an alternative to FEM modeling. Measurements on 15-kVA 240?/208Y V and 500-kVA 11430Y/235Y V distribution transformers were performed to validate the model. A transformer model that is valid for simulations for frequencies above the power frequency was developed after continuing the division of windings into multiple sections and including a higher-order capacitance matrix. Frequency-scan laboratory measurements were used to benchmark the simulations. Finally, a stability analysis of the higher-order model was made by analyzing the trapezoidal rule for numerical integration as used in ATP. Numerical damping was also added to suppress oscillations locally when discontinuities occurred in the solution. A maximum error magnitude of 7.84% was encountered in the simulated currents for different turn-to-ground and turn-to-turn faults. The FEM approach provided the most accurate means to determine the leakage parameters for the ATP model. The higher-order model was found to reproduce the short-circuit impedance acceptably up to about 10 kHz and the behavior at the first anti-resonant frequency was better matched with the measurements.
Resumo:
Neste trabalho é efectuado, não só o diagnóstico em regime permanente, mas também o estudo, simulação e análise do comportamento dinâmico da rede eléctrica da ilha de São Vicente em Cabo Verde. Os estudos de estabilidade transitória desempenham um importante papel, tanto no planeamento como na operação dos sistemas de potência. Tais estudos são realizados, em grande parte, através de simulação digital no domínio do tempo, utilizando integração numérica para resolver as equações não-lineares que modelam a dinâmica do sistema e dependem da existência de registos reais de perturbação (ex: osciloperturbografia). O objectivo do trabalho será também verificar a aplicabilidade dos requisitos técnicos que as unidades geradoras devem ter, no que concerne ao controlo de tensão, estabelecidos na futura regulamentação europeia desenvolvida pela ENTSO-E (European Network Transmission System Operator for Electricity). De entre os requisitos analisou-se a capacidade das máquinas existentes suportarem cavas de tensão decorrentes de curto-circuitos trifásicos simétricos, Fault Ride Through, no ponto de ligação à rede. Identificaram-se para o efeito os factores que influenciam a estabilidade desta rede, em regime perturbado nomeadamente: (i) duração do defeito, (ii) caracterização da carga, com e sem a presença do sistema de controlo de tensão (AVR) em unidades de geração síncronas. Na ausência de registos reais sobre o comportamento do sistema, conclui-se que este é sensível à elasticidade das cargas em particular do tipo potência constante, existindo risco de perda de estabilidade, neste caso, para defeitos superiores a 5ms sem AVR. A existência de AVR nesta rede afigura-se como indispensável para garantir estabilidade de tensão sendo contudo necessário proceder a uma correcta parametrização.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)