998 resultados para Sharlea ultra fine wool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their detrimental effects on human health, scientific interest in ultrafine particles (UFP), has been increasing but available information is far from comprehensive. Children, who represent one of the most susceptible subpopulation, spend the majority of time in schools and homes. Thus, the aim of this study is to (1) assess indoor levels of particle number concentrations (PNC) in ultrafine and fine (20–1000 nm) range at school and home environments and (2) compare indoor respective dose rates for 3- to 5-yr-old children. Indoor particle number concentrations in range of 20–1000 nm were consecutively measured during 56 d at two preschools (S1 and S2) and three homes (H1–H3) situated in Porto, Portugal. At both preschools different indoor microenvironments, such as classrooms and canteens, were evaluated. The results showed that total mean indoor PNC as determined for all indoor microenvironments were significantly higher at S1 than S2. At homes, indoor levels of PNC with means ranging between 1.09 × 104 and 1.24 × 104 particles/cm3 were 10–70% lower than total indoor means of preschools (1.32 × 104 to 1.84 × 104 particles/cm3). Nevertheless, estimated dose rates of particles were 1.3- to 2.1-fold higher at homes than preschools, mainly due to longer period of time spent at home. Daily activity patterns of 3- to 5-yr-old children significantly influenced overall dose rates of particles. Therefore, future studies focusing on health effects of airborne pollutants always need to account for children’s exposures in different microenvironments such as homes, schools, and transportation modes in order to obtain an accurate representation of children overall exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum alloy 6082 was subjected to equal-channel angular pressing (ECAP), which resulted in an ultra-fine-grained (UFG) microstructure with an average grain size of 0.2–0.4 μm. There was a pronounced effect of the grain refinement on the strain-rate sensitivity and tensile ductility. The Hart criterion of tensile necking fails to explain the observed ductility of the UFG material at low strain rates. A correlation between the observed stronger-than-expected ductility and a tendency to microshear band formation at low strain rates was established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the effect of strain rate on the deformation behaviour of an ultrafine grained Al alloy 6082 produced by equal channel angular  pressing. The uniform tensile elongation was found to increase with  decreasing strain rate very substantially. This effect is discussed in terms of the mechanisms that control plastic deformation of the alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultra-fine-grained Al alloy was subjected to compression tests at different strain rates. The strain rate sensitivity of the flow stress was estimated. A strong effect of the baseline strain rate on the mechanisms of plastic deformation was found. It is suggested that a decrease of strain rate results in activation of micro shear banding due to grain boundary sliding. A connection between the strain rate, strain rate sensitivity, and the prevalent deformation mechanism was established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive ZrxTi1-xO4 (x=0.65, 0.50 and 0.35) powder was prepared by the polymeric precursor method. Studies by X-ray diffraction (XRD), nitrogen adsorption/desorption, and thermogravimetric analysis (TG) showed that powders with high crystallinity (>90%) and high surface areas (>40 m(2)/g) are obtained after calcination at 700 degrees C for 3 h. Infrared spectroscopy and XRD results showed that these titanates nucleate from the amorphous phase with no intermediate phases, at low temperature (450 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-fine NaNbO3 powder was prepared by the use of polymeric precursors. X-ray diffraction (XRD) results showed that this niobate nucleates from the amorphous precursor, with no intermediate phases, at low temperature (500°C). Studies by XRD and nitrogen adsorption/desorption showed that powders with high crystallinity ( ≈ 100%) and high surface areas (>20 m2/g) are obtained after calcination at 700°C for 5 h. Compacts of calcined powders showed high sinterability reaching 98% of theoretical density when sintered at 1190°C for 3 h.