919 resultados para Shape memory alloy
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, the dynamical response of a coupled oscillator is investigated, taking in consideration the nonlinear behavior of a SMA spring coupling the two oscillators. Due to the nonlinear coupling terms, the system exhibits both regular and chaotic motions. The Poincaré sections for different sets of coupling parameters are verified. © 2011 World Scientific Publishing Company.
Resumo:
Gegenstand dieser Arbeit ist die Präparation und die ausführliche Charakterisierung epitaktischer Dünnschicht-Proben der Heusler Verbindung Ni2MnGa. Diese intermetallische Verbindung zeigt einen magnetischen Formgedächtnis-Effekt (MFG), der sowohl im Bezug auf mögliche Anwendungen, als auch im Kontext der Grundlagenforschung äußerst interessant ist. In Einkristallen nahe der Stöchiometrie Ni2MnGa wurden riesige magnetfeldinduzierte Dehnungen von bis zu 10 % nachgewiesen. Der zugrundeliegende Mechanismus basiert auf einer Umverteilung von kristallographischen Zwillings-Varianten, die eine tetragonale oder orthorhombische Symmetrie besitzen. Unter dem Einfluss des Magnetfeldes bewegen sich die Zwillingsgrenzen durch den Kristall, was eine makroskopische Formänderung mit sich bringt. Die somit erzeugten reversiblen Längenänderungen können mit hoher Frequenz geschaltet werden, was Ni2MnGa zu einem vielversprechenden Aktuatorwerkstoff macht. rnDa der Effekt auf einem intrinsischen Prozess beruht, eignen sich Bauteile aus MFG Legierungen zur Integration in Mikrosystemen (z.B. im Bereich der Mikrofluidik). rnrnBislang konnten große magnetfeldinduzierte Dehnungen nur für Einkristalle und Polykristalle mit hoher Porosität („foams") nachgewiesen werden. Um den Effekt für Anwendungen nutzbar zu machen, werden allerdings Konzepte zur Miniaturisierung benötigt. Eine Möglichkeit bieten epitaktische dünne Filme, die im Rahmen dieser Arbeit hergestellt und untersucht werden sollen. Im Fokus stehen dabei die Optimierung der Herstellungsparameter, sowie die Präparation von freitragenden Schichten. Zudem werden verschiedene Konzepte zur Herstellung freistehender Mikrostrukturen erprobt. Mittels Röntgendiffraktometrie konnte die komplizierte Kristallstruktur für verschiedene Wachstumsrichtungen verstanden und die genaue Verteilung der Zwillingsvarianten aufgedeckt werden. In Verbindung mit Mikroskopie-Methoden konnte so die Zwillingsstruktur auf verschiedenen Längenskalen geklärt werden. Die Ergebnisse erklären das Ausbleiben des MFG Effekts in den Proben mit (100) Orientierung. Andererseits wurde für Schichten mit (110) Wachstum eine vielversprechende Mikrostruktur entdeckt, die einen guten Ausgangspunkt für weitere Untersuchungen bietet.rnDurch die spezielle Geometrie der Proben war es möglich, Spektroskopie-Experimente in Transmission durchzuführen. Die Ergebnisse stellen den ersten experimentellen Nachweis der Änderungen in der elektronischen Struktur einer metallischen Verbindung während des martensitischen Phasenübergangs dar. Durch Messen des magnetischen Zirkulardichroismus in der Röntgenabsorption konnten quantitative Aussagen über die magnetischen Momente von Ni und Mn getroffen werden. Die Methode erlaubt überdies die Beiträge von Spin- und Bahn-Moment separat zu bestimmen. Durch winkelabhängige Messungen gelang es, die mikroskopische Ursache der magnetischen Anisotropie aufzuklären. Diese Ergebnisse tragen wesentlich zum Verständnis der komplexen magnetischen und strukturellen Eigenschaften von Ni2MnGa bei.rn
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We study the effect of a magnetic field on the martensitic transition of a Cu-Al-Mn shape-memory alloy. The martensitic transition has been studied through resistance measurements under applied magnetic fields ranging from 0 to 50 kOe. Negative magnetoresistance showing an almost linear dependence with the square of the magnetization has been observed. This magnetoresistive effect is associated with the existence of small ferromagnetic Mn-clusters. Its strength and thermal dependence is different in both phases. The martensitic transition temperature is slightly increased and its spread in temperature significantly reduced upon increasing the field. These results show the existence of magnetoelastic coupling, which favors the nucleation of those martensitic variants with the easy magnetization axis aligned with the field.
Resumo:
We study the effect of a magnetic field on the martensitic transition of a Cu-Al-Mn shape-memory alloy. The martensitic transition has been studied through resistance measurements under applied magnetic fields ranging from 0 to 50 kOe. Negative magnetoresistance showing an almost linear dependence with the square of the magnetization has been observed. This magnetoresistive effect is associated with the existence of small ferromagnetic Mn-clusters. Its strength and thermal dependence is different in both phases. The martensitic transition temperature is slightly increased and its spread in temperature significantly reduced upon increasing the field. These results show the existence of magnetoelastic coupling, which favors the nucleation of those martensitic variants with the easy magnetization axis aligned with the field.
Resumo:
We present results from both, calorimetric and dilatometric studies of the isothermal ordering process taking place in a Cu-Zn-Al shape memory alloy after quenches from Tq temperatures ranging from 350 K to 1200 K. The dissipated energy and the length variations of the system are obtained during the process. The change of these quantities in the whole process have been compared with the difference [MATH] between Ms, measured after the relaxation and Ms measured just after the quench. We obtain that these three quantities present, as a function of Tq, the same qualitative behaviour. These changes are then associated with changes of the L21 ordering after the quench in the system. The relaxational process does not follow a single exponential decay. Instead, a continuous slowing down is observed. A relaxation time [MATH] has been defined to characterize the relaxation rate. We show that [MATH] depends on both the annealing and the quenching (Tq [MATH] 800 K) temperatures through an Arrhenius law.
Analytical study of the nonlinear behavior of a shape memory oscillator: Part II-resonance secondary
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.
Resumo:
Microcompression specimens, 10–15 µm in diameter by 20–30 µm in height, were produced from individual parent grains in a polycrystalline U–13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress–strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy.
Resumo:
Shape memory alloys are a special class of metals that can undergo large deformation yet still be able to recover their original shape through the mechanism of phase transformations. However, when they experience plastic slip, their ability to recover their original shape is reduced. This is due to the presence of dislocations generated by plastic flow that interfere with shape recovery through the shape memory effect and the superelastic effect. A one-dimensional model that captures the coupling between shape memory effect, the superelastic effect and plastic deformation is introduced. The shape memory alloy is assumed to have only 3 phases: austenite, positive variant martensite and negative variant martensite. If the SMA flows plastically, each phase will exhibit a dislocation field that permanently prevents a portion of it from being transformed back to other phases. Hence, less of the phase is available for subsequent phase transformations. A constitutive model was developed to depict this phenomena and simulate the effect of plasticity on both the shape memory effect and the superelastic effect in shape memory alloys. In addition, experimental tests were conducted to characterize the phenomenon in shape memory wire and superelastic wire. ^ The constitutive model was then implemented in within a finite element context as UMAT (User MATerial Subroutine) for the commercial finite element package ABAQUS. The model is phenomenological in nature and is based on the construction of stress-temperature phase diagram. ^ The model has been shown to be capable of capturing the qualitative and quantitative aspects of the coupling between plasticity and the shape memory effect and plasticity and the super elastic effect within acceptable limits. As a verification case a simple truss structure was built and tested and then simulated using the FEA constitutive model. The results where found to be close the experimental data. ^