995 resultados para Sertoli Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix proteins play important roles in tissue morphogenesis. We have studied the expression of genes encoding the related SIBLING glycoproteins osteopontin (OPN), bone sialoprotein (BSP), and dentin matrix protein (DMP) during the development of male and female gonads during mouse embryogenesis. Opn mRNA was expressed specifically by Sertoli cells of the developing testis cords, in the mesonephric tubules of both sexes, and, transiently, in the Mullerian ducts of both sexes, as determined by whole-mount and section in situ hybridization. OPN protein was detected in the cytoplasm of Sertoli cells and luminal cells of the mesonephric tubules, with small amounts associated with the plasma membrane of germ cells. We found no defects in developing testes of Opn-/- mice using a range of cell type-specific markers, suggesting that other SIBLING proteins may function in testis development. Dmp and Bsp mRNA was also expressed in the developing testis cords, supporting the view that all three SIBLING proteins may contribute to testis differentiation. (c) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of 3H-proline into protein was regarded as a measure of total protein synthesis and the incorporation into hydroxyproline as indicative of collagen synthesis. Relative collagen synthesis (expressed as percent of total protein synthesized) by Sertoli and peritubular myoid cells cultured from 20-22 day old rat testis was estimated. In both secreted and cellular pools, relative collagen synthesis by Sertoli cells was significantly greater than by peritubular myoid cells. Coculture of Sertoli and myoid cells resulted in a significant increase in relative collagen synthesis when compared to monocultures of each cell type. Addition of serum to peritubular myoid cells resulted in a stronger stimulation of relative collagen production. Sertoli cell extracellular matrix inhibited relative collagen synthesis by peritubular myoid cells in the presence or absence of serum. Radioactivity into hydroxyproline as corrected per cellular DNA also showed similar results. Immunolocalization studies confirmed that both cell types synthesize type I and type IV collagens. These results indicate that stimulation of collagen synthesis observed in Sertoli-myoid cell cocultures is due to humoral interactions, rather than extracellular matrix, and Sertoli cell extracellular matrix regulates serum-induced increase in collagen synthesis by peritubular myoid cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies have shown that gonads were the second target organ of microcystins (MCs), and that MCs exposure exerted obvious toxic effects on male reproductive system of mammals. However, relevant molecular evidences are still lacking. Fas-signaling pathway plays a key role in toxicant-induced germ cell apoptosis. This study was to evaluate the responses of Fas/FasL system related genes and proteins in testes of rats injected intravenously with MCs. Enhanced apoptosis of germ cells in the testes of MCs-treated rats was detected by the terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) associated with up-regulation of the Fas/FasL system. Both Fas and FasL protein expression were induced evidently from I h post-injection, and this high expression level maintained throughout the experiment. In addition, the activation of caspase-8 and caspase-3 protein was also observed, which were indicators of apoptosis. These results suggested the likely involvement of Fas/FasL system in the MCs-induced germ cell apoptosis. It is also suggested that MCs can cause damage to Sertoli cells directly. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to study the morphological changes that occur in cells of the testes of isogenic black mouse C57BL/6/Uni into three periods during spermatogenetic used 15 mice divided into 3 groups of 5 animals with 40,50 and 60 days of age. The mice were sacrificed and weighed. Testicles were weighed and measured, and histologically processed and stained with HE, PAS and Masson Massom-H and evaluated under light microscopy. It was observed that group I with 40 days of age in the seminifcrous tubules had a lumen with sparse small amount of interstitial tubular cells. In the seminiferous epithelium type A spermatogonia, intermediate and B were identified, which occupied the compartment adbasal and intermingled with these cells in spermatocytes I in Pachytene and leptotene was observed, whereas in the adluminal compartment Golgi phase spermatids we observed the presence of acrosomal granule. In group II, the cells of the seminiferous epithelium were developed and it was observed in round spermatids cephalic hood phase plus many elongated spermatids in acrosome phase and Sertoli cells. In Group III, 60 days old, it was found that seminiferous epithelium which was of the tubules had elongated spermatids in acrosome phase and maturation, with elongated nuclei and acrosomal system typical of spermiation in the presence of sperm and residual bodies near the tubular lumen. Therefore morphological evolution of germ cell testicular spermatids can be checked and recognized in its four phases: Golgi, cap, acrosome and maturation over the age of the animal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the ultrastructural study of mature vampire bat Sertoli cells and their relationships with the different stages of testicular germ cells. In vampire bat seminiferous epithelium there are different types of junctional specializations among Sertoli cells and among Sertoli cells and different germ cells, with special emphasis to tight junctions and to junctions like as desmosomes. Ectoplasmic junctions through the Sertoli cells, including the smooth ER, are observed. These cellular interactions and their cytophysiological roles are discussed. Also are related some ultrastructural peculiarities of the Sertoli cell nucleus, nucleolus, cytoplasmic organelles and lipidic inclusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estudos biológicos são necessários para o manejo da vida silvestre em cativeiro, e o conhecimento da reprodução é um dos aspectos importantes para o aumento da produção. Esta pesquisa teve como objetivo determinar a idade da puberdade do cateto macho. Foram utilizadas amostras testiculares de 15 animais, entre 7 a 16 meses, distribuídos em cinco grupos (G1, G2, G3, G4 e G5). Os testículos aumentaram no peso, comprimento e largura consideravelmente (p < 0,05) do G1 ao G3, enquanto que, a partir deste grupo, o desenvolvimento desse órgão foi mais lento. Houve correlação positiva (p < 0,001) entre os seguintes parâmetros testiculares: peso e comprimento (r = 0,97), peso e largura (r = 0,88), comprimento e largura (r = 0,92). Com relação ao diâmetro tubular, observou-se um aumento (p < 0,05) do G1 ao G4. A quantidade total de células espermatogênicas aumentou significativamente (p < 0,05) até o G3, e se estabilizou a partir deste grupo. Houve correlação positiva entre o peso testicular e o diâmetro tubular (r = 0,99, p < 0,001), bem como o peso testicular e as células espermatogênicas (r = 0,98, p < 0,001). A quantidade de células de Sertoli reduziu significativamente (p < 0,05) do G1, onde se encontravam indiferenciadas como células de suporte, até G5, onde foram observadas juntamente com todas as células da linhagem espermática. Estes resultados demonstraram que as fases do desenvolvimento reprodutivo de catetos podem ser classificadas em: impúbere (G1, 7-8 meses), pré-púbere (G2, 9-10 meses), púbere (G3, 11-12 meses), pós-púbere 1 (G4, 13-14 meses) e pós-púbere 2 (G5, 15-16 meses). Com base na análise histológica, a puberdade dos catetos machos ocorre entre 11 e 12 meses de idade.