949 resultados para Sequenziamento, Sanger, dideossi, NGS, 454, pyrosequencing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gammacoronavirus, Infectious Bronchitis Virus (IBV), is a respiratory pathogen of chickens. IBV is a constant threat to poultry production as established vaccines are often ineffective against emerging strains. This requires constant and rapid vaccine production by a process of viral attenuation by egg passage, but the essential forces leading to attenuation in the virus have not yet been characterised. Knowledge of these factors will lead to the development of more effective, rationally attenuated, live vaccines and reduction of the mortality and morbidity caused by this pathogen. M41 CK strain was egg passaged four times many years ago at Houghton Poultry Research Station and stored as M41-CK EP4 (stock virus at The Pirbright Institute since 1992). It was the first egg passage to have its genome pyrosequenced and was therefore used as the baseline reference. The overall aim of this project was to analyse deep sequence data obtained from four IBV isolates (called A, A1, C and D) each originating from the common M41-CK EP4 (ep4) and independently passaged multiple times in embryonated chicken eggs (figure 1.1). Highly polymorphic encoding regions of the IBV genome were then identified which are likely involved in the attenuation process through the formation of independent SNPs and/or SNP clusters. This was then used to direct targeted investigation of SNPs during the attenuation process of the four IBV passages. A previously generated deep sequence dataset was used as a preliminary map of attenuation for one virulent strain of IBV. This investigation showed the nucleocapsid and spike as two highly polymorphic encoding regions within the IBV genome with the highest proportion of SNPs compared to encoding region size. This analysis then led to more focussed studies of the nucleocapsid and spike encoding region with the ultimate aim of mapping key attenuating regions and nucleotide positions. The 454 pyrosequencing data and further investigation of nucleocapsid and spike encoding regions have identified the SNPs present at the same nucleotide positions within analysed A, A1, C and D isolates. These SNPs probably play a crucial role in viral attenuation and universal vaccine production but it is not clear if independent SNPs are also involved in loss of virulence. The majority of SNPs accumulated at different nucleotide positions without further continuation in Sanger sequenced egg passages presenting S2 subunit (spike) and nucleocapsid as polymorphic encoding regions which in nature remain highly conserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used next generation sequencing technologies to investigate growth in a cultured crustacean. The objective was to identify and characterise specific gene loci that contribute important phenotypic variation to growth as well as to develop a large set of SNP markers in candidate genes for assessing correlations between specific mutations and individual growth performance. The genomic dataset generated provides a fundamental resource for application in future crustacean stock improvement programs. Ultimately, the data can be applied to development of culture lines with improved growth performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen selection of B cells within the germinal center reaction generally leads to the accumulation of replacement mutations in the complementarity-determining regions (CDRs) of immunoglobulin genes. Studies of mutations in IgE-associated VDJ gene sequences have cast doubt on the role of antigen selection in the evolution of the human IgE response, and it may be that selection for high affinity antibodies is a feature of some but not all allergic diseases. The severity of IgE-mediated anaphylaxis is such that it could result from higher affinity IgE antibodies. We therefore investigated IGHV mutations in IgE-associated sequences derived from ten individuals with a history of anaphylactic reactions to bee or wasp venom or peanut allergens. IgG sequences, which more certainly experience antigen selection, served as a control dataset. A total of 6025 unique IgE and 5396 unique IgG sequences were generated using high throughput 454 pyrosequencing. The proportion of replacement mutations seen in the CDRs of the IgG dataset was significantly higher than that of the IgE dataset, and the IgE sequences showed little evidence of antigen selection. To exclude the possibility that 454 errors had compromised analysis, rigorous filtering of the datasets led to datasets of 90 core IgE sequences and 411 IgG sequences. These sequences were present as both forward and reverse reads, and so were most unlikely to include sequencing errors. The filtered datasets confirmed that antigen selection plays a greater role in the evolution of IgG sequences than of IgE sequences derived from the study participants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dugongs (Dugong dugon) are marine mammals that obtain nutrients through hindgut fermentation of seagrass, however, the microbes responsible have not been identified. This study used denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing to profile hindgut bacterial communities in wild dugongs. Faecal samples obtained from 32 wild dugongs representing four size/maturity classes, and two captive dugongs fed on cos lettuce were screened using DGGE. Partial 16S rRNA gene profiles of hindgut bacteria from wild dugong calves and juveniles were grouped together and were different to those in subadults and adults. Marked differences between hindgut bacterial communities of wild and captive dugongs were also observed, except for a single captive whose profile resembled wild adults following an unsuccessful reintroduction to the wild. Pyrosequencing of hindgut communities in two wild dugongs confirmed the stability of bacterial populations, and Firmicutes (average 75.6% of Operational Taxonomic Units [OTUs]) and Bacteroidetes (19.9% of OTUs) dominated. Dominant genera were Roseburia, Clostridium, and Bacteroides. Hindgut microbial composition and diversity in wild dugongs is affected by ontogeny and probably diet. In captive dugongs, the absence of the dominant bacterial DNA bands identified in wild dugongs is probably dependent upon prevailing diet and other captive conditions such as the use of antibiotics. This study represents a first step in the characterisation of a novel microbial ecosystem-the marine hindgut of Sirenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Florida manatee, Trichechus manatus latirostris, is a hindgut-fermenting herbivore. In winter, manatees migrate to warm water overwintering sites where they undergo dietary shifts and may suffer from cold-induced stress. Given these seasonally induced changes in diet, the present study aimed to examine variation in the hindgut bacterial communities of wild manatees overwintering at Crystal River, west Florida. Faeces were sampled from 36 manatees of known sex and body size in early winter when manatees were newly arrived and then in mid-winter and late winter when diet had probably changed and environmental stress may have increased. Concentrations of faecal cortisol metabolite, an indicator of a stress response, were measured by enzyme immunoassay. Using 454-pyrosequencing, 2027 bacterial operational taxonomic units were identified in manatee faeces following amplicon pyrosequencing of the 16S rRNA gene V3/V4 region. Classified sequences were assigned to eight previously described bacterial phyla; only 0.36% of sequences could not be classified to phylum level. Five core phyla were identified in all samples. The majority (96.8%) of sequences were classified as Firmicutes (77.3 ± 11.1% of total sequences) or Bacteroidetes (19.5 ± 10.6%). Alpha-diversity measures trended towards higher diversity of hindgut microbiota in manatees in mid-winter compared to early and late winter. Beta-diversity measures, analysed through permanova, also indicated significant differences in bacterial communities based on the season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria , Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression. © 2014 Penton et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead contamination in the environment is of particular concern, as it is a known toxin. Until recently, however, much less attention has been given to the local contamination caused by activities at shooting ranges compared to large-scale industrial contamination. In Finland, more than 500 tons of Pb is produced each year for shotgun ammunition. The contaminant threatens various organisms, ground water and the health of human populations. However, the forest at shooting ranges usually shows no visible sign of stress compared to nearby clean environments. The aboveground biota normally reflects the belowground ecosystem. Thus, the soil microbial communities appear to bear strong resistance to contamination, despite the influence of lead. The studies forming this thesis investigated a shooting range site at Hälvälä in Southern Finland, which is heavily contaminated by lead pellets. Previously it was experimentally shown that the growth of grasses and degradation of litter are retarded. Measurements of acute toxicity of the contaminated soil or soil extracts gave conflicting results, as enchytraeid worms used as toxicity reporters were strongly affected, while reporter bacteria showed no or very minor decreases in viability. Measurements using sensitive inducible luminescent reporter bacteria suggested that the bioavailability of lead in the soil is indeed low, and this notion was supported by the very low water extractability of the lead. Nevertheless, the frequency of lead-resistant cultivable bacteria was elevated based on the isolation of cultivable strains. The bacterial and fungal diversity in heavily lead contaminated shooting sectors were compared with those of pristine sections of the shooting range area. The bacterial 16S rRNA gene and fungal ITS rRNA gene were amplified, cloned and sequenced using total DNA extracted from the soil humus layer as the template. Altogether, 917 sequenced bacterial clones and 649 sequenced fungal clones revealed a high soil microbial diversity. No effect of lead contamination was found on bacterial richness or diversity, while fungal richness and diversity significantly differed between lead contaminated and clean control areas. However, even in the case of fungi, genera that were deemed sensitive were not totally absent from the contaminated area: only their relative frequency was significantly reduced. Some operational taxonomic units (OTUs) assigned to Basidiomycota were clearly affected, and were much rarer in the lead contaminated areas. The studies of this thesis surveyed EcM sporocarps, analyzed morphotyped EcM root tips by direct sequencing, and 454-pyrosequenced fungal communities in in-growth bags. A total of 32 EcM fungi that formed conspicuous sporocarps, 27 EcM fungal OTUs from 294 root tips, and 116 EcM fungal OTUs from a total of 8 194 ITS2 454 sequences were recorded. The ordination analyses by non-parametric multidimensional scaling (NMS) indicated that Pb enrichment induced a shift in the EcM community composition. This was visible as indicative trends in the sporocarp and root tip datasets, but explicitly clear in the communities observed in the in-growth bags. The compositional shift in the EcM community was mainly attributable to an increase in the frequencies of OTUs assigned to the genus Thelephora, and to a decrease in the OTUs assigned to Pseudotomentella, Suillus and Tylospora in Pb-contaminated areas when compared to the control. The enrichment of Thelephora in contaminated areas was also observed when examining the total fungal communities in soil using DNA cloning and sequencing technology. While the compositional shifts are clear, their functional consequences for the dominant trees or soil ecosystem remain undetermined. The results indicate that at the Hälvälä shooting range, lead influences the fungal communities but not the bacterial communities. The forest ecosystem shows apparent functional redundancy, since no significant effects were seen on forest trees. Recently, by means of 454 pyrosequencing , the amount of sequences in a single analysis run can be up to one million. It has been applied in microbial ecology studies to characterize microbial communities. The handling of sequence data with traditional programs is becoming difficult and exceedingly time consuming, and novel tools are needed to handle the vast amounts of data being generated. The field of microbial ecology has recently benefited from the availability of a number of tools for describing and comparing microbial communities using robust statistical methods. However, although these programs provide methods for rapid calculation, it has become necessary to make them more amenable to larger datasets and numbers of samples from pyrosequencing. As part of this thesis, a new program was developed, MuSSA (Multi-Sample Sequence Analyser), to handle sequence data from novel high-throughput sequencing approaches in microbial community analyses. The greatest advantage of the program is that large volumes of sequence data can be manipulated, and general OTU series with a frequency value can be calculated among a large number of samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Mata Atlântica (MA) está entre as regiões com maior biodiversidade e mais ameaçadas do planeta. Esforços em diversas áreas do conhecimento têm sido feitos para que se tenha uma estimativa mais refinada da diversidade existente e sua organização ao longo do bioma. O crescente número de estudos que buscam reconstituir a história da diversificação da MA apontam para um cenário espacial e temporal complexo, havendo ainda uma lacuna no conhecimento dos processos em pequena escala. Vertebrados em miniatura têm se mostrado uma boa ferramenta para estudos de processos evolutivos em pequena escala. Assim, o gênero Euparkerella, endêmico de uma pequena região da MA dos Estados do Rio de Janeiro (RJ) e Espírito Santo (ES), foi escolhido como modelo para este estudo. No primeiro capítulo buscou-se descrever a diversidade existente dentro do gênero a partir de uma filogenia molecular. Para isso, utilizaram-se métodos bayesianos para gerar genealogias de genes e de espécies a partir de um fragmento de gene mitocondrial e quatro fragmentos de genes nucleares. Os resultados obtidos apontaram para uma grande diversidade críptica no gênero. Foram identificadas seis unidades evolutivas significativamente divergentes para o RJ: duas em Euparkerella cochranae, três em Euparkerella brasiliensis, e Euparkerella sp.. A espécie mais basal recuperada foi Euparkerella robusta, do ES, e estimou-se o início da diversificação do gênero para o final do Mioceno. O segundo capítulo descreve onze marcadores de microssatélites desenvolvidos para Euparkerella brasiliensis através do método de pirosequenciamento de nova geração 454. No terceiro capítulo estudou-se apenas uma unidade evolutiva, Euparkerella brasiliensis da área dos Três Picos/ RJ. A partir de marcadores de evolução rápida (microssatélites) e lenta (sequências de DNA) buscou-se compreender a estrutura e a dinâmica populacional desta unidade evolutiva em uma área bastante pequena (aprox. 20 km) sob influência de um gradiente ambiental altitudinal (40 m 1000 m). Foram identificadas, a partir dos microssatélites, duas subpopulações geneticamente distintas nas bordas do gradiente. O fluxo gênico se deu predominantemente das bordas para a zona de contato, onde foi observado o maior efetivo populacional. Tais resultados indicam que pequenas variações ambientais podem atuar no isolamento populacional em Euparkerella e corroboram o padrão de formas microendêmicas identificadas na filogenia. Futuros estudos devem ser feitos no sentido de buscar caracterizar morfologicamente as unidades evolutivas aqui identificadas; preencher as lacunas amostrais, especialmente no ES; e descrever os processos que atuam em pequena escala nas zonas de contato entre as unidades evolutivas e fatores limitantes a distribuição das mesmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine sponges have been an abundant source of new metabolites in recent years. The symbiotic association between the bacteria and the sponge has enabled scientists to access the bacterial diversity present within the bacterial/sponge ecosystem. This study has focussed on accessing the bacterial diversity in two Irish coastal marine sponges, namely Amphilectus fucorum and Eurypon major. A novel species from the genus Aquimarina has been isolated from the sponge Amphilectus fucorum. The study has also resulted in the identification of an α–Proteobacteria, Pseudovibrio sp. as a potential producer of antibiotics. Thus a targeted based approach to specifically cultivate Pseudovibrio sp. may prove useful for the development of new metabolites from this particular genus. Bacterial isolates from the marine sponge Haliclona simulans were screened for anti–fungal activity and one isolate namely Streptomyces sp. SM8 displayed activity against all five fungal strains tested. The strain was also tested for anti–bacterial activity and it showed activity against both against B. subtilis and P. aeruginosa. Hence a combinatorial approach involving both biochemical and genomic approaches were employed in an attempt to identify the bioactive compounds with these activities which were being produced by this strain. Culture broths from Streptomyces sp. SM8 were extracted and purified by various techniques such as reverse–phase HPLC, MPLC and ash chromatography. Anti–bacterial activity was observed in a fraction which contained a hydroxylated saturated fatty acid and also another compound with a m/z 227 but further structural elucidation of these compounds proved unsuccessful. The anti–fungal fractions from SM8 were shown to contain antimycin–like compounds, with some of these compounds having different retention times from that of an antimycin standard. A high–throughput assay was developed to screen for novel calcineurin inhibitors using yeast as a model system and three putative bacterial extracts were found to be positive using this screen. One of these extracts from SM8 was subsequently analysed using NMR and the calcineurin inhibition activity was con rmed to belong to a butenolide type compound. A H. simulans metagenomic library was also screened using the novel calcineurin inhibitor high–throughput assay system and eight clones displaying putative calcineurin inhibitory activity were detected. The clone which displayed the best inhibitory activity was subsequently sequenced and following the use of other genetic based approaches it became clear that the inhibition was being caused by a hypothetical protein with similarity to a hypothetical Na+/Ca2+ exchanger protein. The Streptomyces sp. SM8 genome was sequenced from a fragment library using Roche 454 pyrosequencing technology to identify potential secondary metabolism clusters. The draft genome was annotated by IMG/ER using the Prodigal pipeline. The Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMPN00000000. The genome contains genes which appear to encode for several polyketide synthases (PKS), non–ribosomal peptide synthetases (NRPS), terpene and siderophore biosynthesis and ribosomal peptides. Transcriptional analyses led to the identification of three hybrid clusters of which one is predicted to be involved in the synthesis of antimycin, while the functions of the others are as yet unknown. Two NRPS clusters were also identified, of which one may be involved in gramicidin biosynthesis and the function of the other is unknown. A Streptomyces sp. SM8 NRPS antC gene knockout was constructed and extracts from the strain were shown to possess a mild anti–fungal activity when compared to the SM8 wild–type. Subsequent LCMS analysis of antC mutant extracts confirmed the absence of the antimycin in the extract proving that the observed anti–fungal activity may involve metabolite(s) other than antimycin. Anti–bacterial activity in the antC gene knockout strain against P. aeruginosa was reduced when compared to the SM8 wild–type indicating that antimycin may be contributing to the observed anti–bacterial activity in addition to the metabolite(s) already identified during the chemical analyses. This is the first report of antimycins exhibiting anti–bacterial activity against P. aeruginosa. One of the hybrid clusters potentially involved in secondary metabolism in SM8 that displayed high and consistent levels of gene–expression in RNA studies was analysed in an attempt to identify the metabolite being produced by the pathway. A number of unusual features were observed following bioinformatics analysis of the gene sequence of the cluster, including a formylation domain within the NRPS cluster which may add a formyl group to the growing chain. Another unusual feature is the lack of AT domains on two of the PKS modules. Other unusual features observed in this cluster is the lack of a KR domain in module 3 of the cluster and an aminotransferase domain in module 4 for which no clear role has been hypothesised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, marine sponges collected in Irish waters were analysed for their associated microbiota. Of the approximately 240 bacterial isolates obtained from two sponges several showed antimicrobial activity; among them members of genera which have rarely been shown to produce antimicrobial compounds. Differences observed from the sponge-derived groups of isolates in terms of bioactivity suggests that S. carnosus isolates may be a better source of antibacterial compounds, while Leucosolenia sp. isolates appear to be a better source of antifungal compounds. More than 60% of fungal isolates obtained from 12 sponge samples proved to be bioactive. One of the isolates, which was closely related to Fusarium oxysporum and showed activity against bacteria and fungi, was investigated for its secondary metabolite genes. At least 5 different NRPS genes, with a sequence similarity as low as 50 % to known genes, were identified highlighting the likelihood that this isolate may be capable of producing novel secondary metabolites. A Micromonospora sp. was isolated from a Haliclona simulans sample collected in Irish waters. The isolate inhibited the growth of Gram positive bacterial test strains in three different antimicrobial assays. Employing preparative layer chromatography the compound responsible for the bioactivity could be isolated. According to LC-MS andNMR data the bioactive compound could indeed be novel. Finally, two deep water sponges were shown to host a remarkably different bacterial and archaeal diversity by application of 454 Pyrosequencing. The L. diversichela –proteobacterial community was dominated by a single ƴ-proteobacterial bacterium whereas the S. normani sample hosted a largely sponge specific microbial community, even more diverse than has been previously reported for shallow water sponges. Organisms potentially involved in nitrification, sulphate reduction and secondary metabolite production were found to be spatially distributed in the sponge. Furthermore, a deep sea specific population was implied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall aims of this study were to investigate the differences between raw/farm milk and pasteurised milk with respect to potential immune modifying effects following consumption and investigate the bacterial composition of raw milk compared to pasteurised milk. Furthermore, in this thesis, panels of potential probiotic bacteria from the Bifidobacterium and Lactobacillus genera were investigated. The overall bacterial composition of raw milk was compared with pasteurised milk using samples obtained from commercial milk producers around Ireland using next generation sequencing technology (454 pyrosequencing). Here the presence of previously unrecognised and diverse bacterial populations in unpasteurised cow’s milk was identified. Futhermore the bacterial content of pasteurised milk was found to be more diverse than previously thought. The global response of the adenocarcinoma cell line HT-29 to raw milk and pasteurised milk exposures were also characterised using whole genome microarray technology. Over one thousand differentially expressed genes were identified which were found to be involved in a plethora of cellular functions. Interestingly a reduction in immune related activity (e.g. Major histocompatability complex class II signalling and T and B cell proliferation) was identified in cells exposed to pasteurised milk compared with raw milk exposures. Further studies comparing human cell response to raw versus pasteurised milk was performed using peripheral blood mononuclear cells (PBMC) from healthy donors. A reduction in CD14 was identified following raw milk exposures compared with pasteurised milk and the pattern of cytokine production may indicate that gram positive bacteria in the raw milk were contributing to the differences in the cellular response to raw versus pasteurised milk. Panels of potentially probiotic bacteria (comprising of lactobacilli and bifidobacteria) were further assessed for immunomodulatory capabilities using cell culture based models. Gene expression and cytokine production were used to evaluate stimulated and unstimulated (LPS) cellular responses as well as interaction mechanisms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alpha-, Beta- and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown species in these habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphonates are organic compounds that contain a C-P bond and are a poorly characterized component of the marine phosphorus cycle. They may represent a potential source of bioavailable phosphorus, particularly in oligotrophic conditions. This study has investigated the distribution of the phnA gene which encodes phosphonoacetate hydrolase, the enzyme that mineralizes phosphonoacetate. Using newly designed degenerate primers targeting the phnA gene we analysed the potential for phosphonoacetate utilization in DNA and cDNA libraries constructed from a phytoplankton bloom in the Western English Channel during July 2006. Total RNA was isolated and reverse transcribed and phosphonoacetate hydrolase (phnA) transcripts were PCR amplified from the cDNA with the degenerate primers, cloned and sequenced. Phylogenetic analysis demonstrated considerable diversity with 14 sequence types yielding five unique phnA protein groups. We also identified 28 phnA homologues in a 454-pyrosequencing metagenomic and metatranscriptomic study from a coastal marine mesocosm, indicating that > 3% of marine bacteria in this study contained phnA. phnA homologues were also present in a metagenomic fosmid library from this experiment. Finally, cultures of four isolates of potential coral pathogens belonging to the Vibrionaceae contained the phnA gene. In the laboratory, these isolates were able to grow with phosphonoacetate as sole P and C source. The fact that the capacity to utilize phosphonoacetate was evident in each of the three coastal environments suggests the potential for widespread utilization of this bioavailable P source.