960 resultados para Separating of variables


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work proposes a method based on CLV (Clustering around Latent Variables) for identifying groups of consumers in L-shape data. This kind of datastructure is very common in consumer studies where a panel of consumers is asked to assess the global liking of a certain number of products and then, preference scores are arranged in a two-way table Y. External information on both products (physicalchemical description or sensory attributes) and consumers (socio-demographic background, purchase behaviours or consumption habits) may be available in a row descriptor matrix X and in a column descriptor matrix Z respectively. The aim of this method is to automatically provide a consumer segmentation where all the three matrices play an active role in the classification, getting homogeneous groups from all points of view: preference, products and consumer characteristics. The proposed clustering method is illustrated on data from preference studies on food products: juices based on berry fruits and traditional cheeses from Trentino. The hedonic ratings given by the consumer panel on the products under study were explained with respect to the product chemical compounds, sensory evaluation and consumer socio-demographic information, purchase behaviour and consumption habits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract no. AF 33(600)-35031."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meta-analysis was used to quantify the moderating effects of seven properties of cognitions-accessibility, temporal stability, direct experience, involvement, certainty, ambivalence and affective-cognitive consistency-on cognition-intention and cognition-behaviour relations. Literature searches revealed 44 studies that could be included in the review. Findings showed that all of the properties, except involvement, moderated attitude-behaviour consistency. Similarly, all relevant moderators improved the consistency between intentions and behaviour. Temporal stability moderated PBC-behaviour relations, certainty moderated subjective norm-intention relations, and ambivalence, certainty, and involvement all moderated attitude-intention relations. Overall, temporal stability appeared to be the strongest moderator of cognition-behaviour relations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014 Cises This work is distributed with License Creative Commons Attribution-Non commercial-No derivatives 4.0 International (CC BY-BC-ND 4.0)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroeconomists working with multivariate models typically face uncertainty over which (if any) of their variables have long run steady states which are subject to breaks. Furthermore, the nature of the break process is often unknown. In this paper, we draw on methods from the Bayesian clustering literature to develop an econometric methodology which: i) finds groups of variables which have the same number of breaks; and ii) determines the nature of the break process within each group. We present an application involving a five-variate steady-state VAR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Precision agriculture (PA) allows farmers to identify and address variations in an agriculture field. Management zones (MZs) make PA more feasible and economical. The most important method for defining MZs is a fuzzy C-means algorithm, but selecting the variable for use as the input layer in the fuzzy process is problematic. BAZZI et al. (2013) used Moran’s bivariate spatial autocorrelation statistic to identify variables that are spatially correlated with yield while employing spatial autocorrelation. BAZZI et al. (2013) proposed that all redundant variables be eliminated and that the remaining variables would be considered appropriate on the MZ generation process. Thus, the objective of this work, a study case, was to test the hypothesis that redundant variables can harm the MZ delineation process. BAZZI This work was conducted in a 19.6-ha commercial field, and 15 MZ designs were generated by a fuzzy C-means algorithm and divided into two to five classes. Each design used a different composition of variables, including copper, silt, clay, and altitude. Some combinations of these variables produced superior MZs. None of the variable combinations produced statistically better performance that the MZ generated with no redundant variables. Thus, the other redundant variables can be discredited. The design with all variables did not provide a greater separation and organization of data among MZ classes and was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.