993 resultados para Semi-infinite domain
Resumo:
We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
Resumo:
We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed to be a fixed positive constant. The material properties of the media are characterized completely by an index of refraction, which is a bounded measurable function in the layer and takes positive constant values above and below the layer, corresponding to the homogeneous dielectric media. In this paper, we examine only the transverse magnetic (TM) polarization case. A radiation condition appropriate for scattering by infinite rough surfaces is introduced, a generalization of the Rayleigh expansion condition for diffraction gratings. With the help of the radiation condition the problem is reformulated as an equivalent mixed system of boundary and domain integral equations, consisting of second-kind integral equations over the layer and interfaces within the layer. Assumptions on the variation of the index of refraction in the layer are then imposed which prove to be sufficient, together with the radiation condition, to prove uniqueness of solution and nonexistence of guided wave modes. Recent, general results on the solvability of systems of second kind integral equations on unbounded domains establish existence of solution and continuous dependence in a weighted norm of the solution on the given data. The results obtained apply to the case of scattering by a rough interface between two dielectric media and to many other practical configurations.
Resumo:
The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux are prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains.
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Instituto Universitario (SIANI)
Resumo:
We generalize uniqueness theorems for non-extremal black holes with three mutually independent Killing vector fields in five-dimensional minimal supergravity in order to account for the existence of non-trivial two-cycles in the domain of outer communication. The black hole space-times we consider may contain multiple disconnected horizons and be asymptotically flat or asymptotically Kaluza–Klein. We show that in order to uniquely specify the black hole space-time, besides providing its domain structure and a set of asymptotic and local charges, it is necessary to measure the magnetic fluxes that support the two-cycles as well as fluxes in the two semi-infinite rotation planes of the domain diagram.
Resumo:
The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l ∞(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel–Legendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system’s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et al. (SIAM J. Optim. 20, 1504–1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system’s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.
Resumo:
Given a convex optimization problem (P) in a locally convex topological vector space X with an arbitrary number of constraints, we consider three possible dual problems of (P), namely, the usual Lagrangian dual (D), the perturbational dual (Q), and the surrogate dual (Δ), the last one recently introduced in a previous paper of the authors (Goberna et al., J Convex Anal 21(4), 2014). As shown by simple examples, these dual problems may be all different. This paper provides conditions ensuring that inf(P)=max(D), inf(P)=max(Q), and inf(P)=max(Δ) (dual equality and existence of dual optimal solutions) in terms of the so-called closedness regarding to a set. Sufficient conditions guaranteeing min(P)=sup(Q) (dual equality and existence of primal optimal solutions) are also provided, for the nominal problems and also for their perturbational relatives. The particular cases of convex semi-infinite optimization problems (in which either the number of constraints or the dimension of X, but not both, is finite) and linear infinite optimization problems are analyzed. Finally, some applications to the feasibility of convex inequality systems are described.
Resumo:
Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra U-q[sl(2\1)]. We. give the bosonization of the boundary states. We give an integral expression for the correlation functions of the boundary model, and derive the difference equations which they satisfy.
Resumo:
The sudden release of a mass of fluid in a channel generates a highly unsteady flow motion, called dam break wave. While industrial fluids exhibit sometimes non-Newtonian behaviours, the viscous fluid flow assumption remains a useful approximation for simplified analyses. In this study, new solutions of laminar dam break wave are proposed for a semi-infinite reservoir based upon the method of characteristics. The solutions yield simple explicit expressions of the wave front location, wave front celerity and instantaneous free-surface profiles that compare favourably with experimental observations. Both horizontal and sloping channel configurations are treated. The simplicity of the equations may allow future extension to more complicated fluid flows.
Resumo:
The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.