889 resultados para Self-optimizing control
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.
Resumo:
This paper considers the use of a discrete-time deadbeat control action on systems affected by noise. Variations on the standard controller form are discussed and comparisons are made with controllers in which noise rejection is a higher priority objective. Both load and random disturbances are considered in the system description, although the aim of the deadbeat design remains as a tailoring of reference input variations. Finally, the use of such a deadbeat action within a self-tuning control framework is shown to satisfy, under certain conditions, the self-tuning property, generally though only when an extended form of least-squares estimation is incorporated.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.
Resumo:
This paper discusses the use of multi-layer perceptron networks for linear or linearizable, adaptive feedback.control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parametrization. A comparison is made with standard, non-perceptron algorithms, e.g. self-tuning control, and it is shown how gross over-parametrization can occur in the neural network case. Because of the resultant heavy computational burden and poor controller convergence, a strong case is made against the use of neural networks for discrete-time linear control.
Resumo:
In this article, an overview is given of some of the more common approaches taken in applying adaptive control. Gain scheduling, model reference control and self-tuning control are all discussed and in each case suggestions are given for further reading.
Resumo:
The self-memory relationship is thought to be bidirectional, in such a way that memories provide context for the self, and equally, the self exercises control over retrieval (Conway, 2005). Autobiographical memories are not distributed equally across the life span; instead, memories peak between ages 10 and 30. This reminiscence bump has been suggested to support the emergence of a stable and enduring self. In the present study, the relationship between memory accessibility and self was explored with a novel methodology that used generation of self images in the form of I am statements. Memories generated from I am cues clustered around the time of emergence for that particular self image. We argue that, when a new self-image is formed, it is associated with the encoding of memories that are relevant to that self and that remain highly accessible to the rememberer later in life. This study offers a new methodology for academics and clinicians interested in the relationship between memory and identity.
Resumo:
When proposing primary control (changing the world to fit self)/secondary control (changing self to fit the world) theory, Weisz et al. (1984) argued for the importance of the “serenity to accept the things I cannot change, the courage to change the things I can” (p. 967), and the wisdom to choose the right control strategy that fits the context. Although the dual processes of control theory generated hundreds of empirical studies, most of them focused on the dichotomy of PC and SC, with none of these tapped into the critical concept: individuals’ ability to know when to use what. This project addressed this issue by using scenario questions to study the impact of situationally adaptive control strategies on youth well-being. To understand the antecedents of youths’ preference for PC or SC, we also connected PCSC theory with Dweck’s implicit theory about the changeability of the world. We hypothesized that youths’ belief about the world’s changeability impacts how difficult it was for them to choose situationally adaptive control orientation, which then impacts their well-being. This study included adolescents and emerging adults between the ages of 18 and 28 years (Mean = 20.87 years) from the US (n = 98), China (n = 100), and Switzerland (n = 103). Participants answered a questionnaire including a measure of implicit theories about the fixedness of the external world, a scenario-based measure of control orientation, and several measures of well-being. Preliminary analyses of the scenario-based control orientation measures showed striking cross-cultural similarity of preferred control responses: while for three of the six scenarios primary control was the predominately chosen control response in all cultures, for the other three scenarios secondary control was the predominately chosen response. This suggested that youths across cultures are aware that some situations call for primary control, while others demand secondary control. We considered the control strategy winning the majority of the votes to be the strategy that is situationally adaptive. The results of a multi-group structural equation mediation model with the extent of belief in a fixed world as independent variable, the difficulties of carrying out the respective adaptive versus non-adaptive control responses as two mediating variables and the latent well-being variable as dependent variable showed a cross-culturally similar pattern of effects: a belief in a fixed world was significantly related to higher difficulties in carrying out the normative as well as the non-normative control response, but only the difficulty of carrying out the normative control response (be it primary control in situations where primary control is normative or secondary control in situations where secondary control is normative) was significantly related to a lower reported well-being (while the difficulty of carrying out the non-normative response was unrelated to well-being). While previous research focused on cross-cultural differences on the choice of PC or SC, this study shed light on the universal necessity of applying the right kind of control to fit the situation.
Resumo:
El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.
Resumo:
The floral biology, pollinators and breeding system of Echinodorus longipetalus Micheli were studied in a marshy area of the district of Taquaritinga (State of Sao Paulo), southeastern Brazil. E. longipetalus is gynodioecious and as far as is known, this is the first record of unisexual flowers, besides perfect flowers, in Echinodorus. Proportion of female individuals in the studied population is 50% and produces 31% more flowers than hermaphrodites. Perfect and pistillate flowers of E. longipetalus are similar in appearance and are pollinated by several species of Hymenoptera (mainly by Xylocopa (Neoxylocopa) suspecta Moure & Camargo). Perfect flowers offer pollen as a reward. Pistillate flowers attract floral visitors by deceit with their staminodes that resemble the stamens of the perfect flowers. Visits to pistillate flowers are quick (1-2 s), while visits to perfect flowers last up to 120 s. The perfect flowers are self-compatible and produce fruits through spontaneous self-pollination (control flowers), whereas the pistillate ones only set fruits through cross-pollinations. Perfect and pistillate flowers set more fruits under natural conditions than in manual treatments, respectively. Although the pistillate and perfect flowers bear a strong similarity, the selective pollinator behavior seems to be responsible for the increase of fruit set in perfect flowers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.
Resumo:
A polynomial-based ARMA model, when posed in a state-space framework can be regarded in many different ways. In this paper two particular state-space forms of the ARMA model are considered, and although both are canonical in structure they differ in respect of the mode in which disturbances are fed into the state and output equations. For both forms a solution is found to the optimal discrete-time observer problem and algebraic connections between the two optimal observers are shown. The purpose of the paper is to highlight the fact that the optimal observer obtained from the first state-space form, commonly known as the innovations form, is not that employed in an optimal controller, in the minimum-output variance sense, whereas the optimal observer obtained from the second form is. Hence the second form is a much more appropriate state-space description to use for controller design, particularly when employed in self-tuning control schemes.
Resumo:
O estudo, fundamentado nas premissas teóricas sobre relações de trabalho, em especial de algumas variáveis que integram a categoria microssocial - organização do trabalho e condições de trabalho - aliadas às contribuições da Escola Dejouriana, que analisa os temas do prazer e do sofrimento vinculados ao trabalho, procura desvendar o processo de desgaste/prazer no trabalho dentro de um hospital universitário, trazido através do discurso dos trabalhadores de enfermagem ali atuantes, buscando captar suas realizações, dificuldades, alegrias, tramas e defesas, angústias, contradições, a luta pelo poder, as vivências subjetivas, os silêncios. A presente pesquisa de caráter exploratório, por meio de um roteiro com questões fechadas e entrevistas semi-estruturadas, envolvendo trinta e seis profissionais, representantes das categorias enfermeiro, técnico de enfermagem e auxiliar de enfermagem visou apreender a realidade laboral do Hospital Universitário de Juiz de Fora, tentando delinear os contextos de trabalho vividos como positivo ou negativos, denunciando pontos na convergência trabalhador-contexto de trabalho, a partir dos quais as mudanças devam ser impulsionadas, para que se possa criar novas.estratégias, dirimir conflitos e ampliar as possibilidades de auto-realização e prazer no trabalho. As categorias de análise definidas no estudo possibilitaram uma reflexão sobre os desafios e problemas que surgem da relação trabalhador/trabalho/instituição. O conhecimento dos fatores implicados na gênese do desgaste/prazer no trabalho de enfermagem abre espaço para que estes sejam gerenciados pelos trabalhadores em proveito de sua saúde e qualidade de vida. Em suma, temos que a trajetória da enfermagem de anjo de branco a profissional tem sido marcada por preconceitos, desgaste, sofrimento e luta por espaço laboral. Abandonando a posição de saber periférico e vulnerável, assistimos atualmente o esforço dos trabalhadores de enfermagem para a construção de uma nova imagem que contempla estratégias de revalorização do estatuto profissional, controle da formação, das carreiras e dos conteúdos do trabalho para que se tornem agentes privilegiados e ativos na melhoria das condições de saúde da comunidade e propulsoras de novas idéias para o avanço da gestão nas organizações hospitalares.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ