979 resultados para Self-compacting concrete
Resumo:
Ettringite and thaumasite can be found among the deterioration products of cementitious materials exposed to sulfate and hydrochloric attack. The results of a test program to investigate the acid resistance of self-compacting concrete (SCC) and conventional concrete (CC), immersed up to 18 weeks at 20°C in sulfuric and hydrochloric acid solutions, are described. The SCC was prepared with 47% carboniferous limestone powder, as a replacement for cement, and an ordinary portland cement. The CC was prepared with portland cement only. The water-binder ratios of the SCC and CC were 0.36 and 0.46, respectively. The parameter investigated was the time, in weeks, taken to cause 10% mass loss of fully immersed concrete specimens in a 1% solution of sulfuric acid and the same amount of loss in a 1% solution of hydrochloric acid. The investigation indicated that the SCC performed better than the CC in sulfuric solution but was slightly more vulnerable to hydrochloric acid attack compared to CC. The mode of attack between the two solutions was different.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.