973 resultados para Seleção de características


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Genética e Melhoramento Animal - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of the present study is to identify the dermatoglyphic and somatotypic characteristics and the physical qualities of athletes from the under-17 State volleyball team, in Rio Grande do Norte, Brazil. The sample was composed of athletes, n = 14, aged 15.0 ± 0.88 years, weight (Kg) 58.3 ± 5.90 and height (cm) 169.4 ± 7.97, members of the referred team. For data collection Cummins & Midlo s (1942), o dermatoglyphic method and Heath & Carter s (1967) somatotypic method were used and to evaluate physical qualities, 2400m, 50m, Shuttle Run, abdominal , Sargent test and medicine-ball toss were performed. Fingerprints show that the group presents genetic predisposition for the following physical qualities: explosive force and velocity. As to somatotype, the group was endo-ectomorphic. At physical evaluation the group presented low Vo2 max values and reasonable levels of explosive force, local muscular endurance, agility and velocity. We conclude that: according to the dermatoglyphic model observed, the group needs training strategies to improve coordination and agility; somatotype reveals the necessity for reducing fat levels and increasing muscular mass; the evaluation of physical qualities demonstrates the need for better physical preparation. This study traces the profile of the under-17 volleyball player from Rio Grande do Norte, with respect to genetic and somatotypic aspects and physical qualities, which will serve as a parameter for future state teams

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Componentes de variância e parâmetros genéticos para características de crescimento foram estimados usando diferentes modelos em um rebanho da raça Gir. Utilizou-se o método da máxima verossimilhança restrita sob modelo animal univariado. Os modelos de análise incluíram os efeitos fixos de mês de nascimento, grupo contemporâneo e idade da vaca. Cinco modelos diferindo quanto aos efeitos aleatórios foram testados. Para todas as características da fase pré-desmama, o teste de razão de verossimilhança (LRT) indicou o modelo com efeito genético aditivo direto e efeitos maternos (genético e de ambiente permanente) como o de melhor ajuste. As estimativas de herdabilidade direta para peso ao nascer (PN), peso aos quatro meses corrigido para 120 dias (P120), peso à desmama corrigido para 210 dias (P210) e ganho diário na fase pré-desmama (GPRE) foram, respectivamente, 0,31± 0,07; 0,14 ± 0,06; 0,23 ± 0,07 e 0,22 ± 0,07. Para as características da fase pós-desmama, o modelo que forneceu o melhor ajuste aos dados incluiu apenas o efeito genético aditivo direto. As estimativas de herdabilidade direta para peso de machos ao final da prova de ganho de peso (P378), peso de fêmeas corrigido para 550 dias (P550), ganho diário na prova de ganho de peso (G112), altura aos 378 dias em machos (AM) e altura aos 550 dias, em fêmeas (AF) foram, respectivamente: 0,45 ± 0,11; 0,29 ± 0,11; 0,37 ± 0,11; 0,79 ± 0,13 e 0,36 ± 0,0. Os efeitos maternos, tanto o genético quanto o de ambiente permanente, foram fontes de variação importantes para as características da fase pré-desmama, não sendo verificada influência desses efeitos sobre as características da fase pós-desmama.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Os dados são provenientes de 234 touros da raça Nelore participantes de um teste de progênie, no período de 1996 a 2003. A diferença esperada na progênie (DEP) de sete características: peso aos 120 e 210 dias, efeito materno (DMPP120 e DMPP210), peso e perímetro escrotal aos 365 e 450 dias, efeito direto (DDP365, DDP450, DDPE365 e DDPE450) e idade ao primeiro parto (DDIPP) foi utilizada para classificar os animais em três grupos, assim como identificar quais as características possuíram maior poder discriminatório na formação de cada grupo. Para tanto, foram utilizados procedimentos estatísticos multivariados de análise de agrupamentos k-médias e componentes principais. Os resultados evidenciaram que, dos três grupos formados, dois se destacaram quanto aos valores médios das DEPs. A importância desses dois grupos de touros foi confirmada pela análise de componentes principais, que associou a eles valores superiores de DEPs diretas de peso e perímetro escrotal. A quantidade da variabilidade original retida pelos dois primeiros componentes principais foi de 70,22%. Estes procedimentos mostraram-se eficientes e constituíram importantes ferramentas para classificar touros, discriminar variáveis, bem como resumir informações multivariadas, podendo ser usados como auxílio valioso na seleção de reprodutores para uso nos programas de melhoramento genético.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)