986 resultados para Second harmonic generation
Resumo:
The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.
Resumo:
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.
Resumo:
The technology of low-loss orientation-patterned gallium arsenide (OP-GaAs) waveguided crystals was developed and realized by reduction of diffraction scattering on the waveguide pattern. The propagation losses in the OP-GaAs waveguide were estimated to be as low as 2.1 dB/cm, thus demonstrating the efficient second harmonic generation at 1621 nm under an external pumping. © 2013 Optical Society of America.
Resumo:
We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.
Resumo:
We demonstrate the possibility to use a fractional order of poling period of nonlinear crystal waveguides for tunable second harmonic generation. This approach allows one to extend wavelength coverage in the visible spectral range by frequency doubling in a single crystal waveguide.
Resumo:
An optical autocorrelator grown on a (211)B GaAs substrate that uses visible surface-emitted second-harmonic generation is demonstrated. The (211)B orientation needs TE mode excitation only, thus eliminating the problem of the beating between the TE and TM modes that is required for (100)-grown devices; it also has the advantage of giving higher upconversion efficiency than (111) growth. Values of waveguide loss and the difference in the effective refractive index between the TE(0) and TE(1) modes were also obtained from the autocorrelation experiment.
Resumo:
An optical autocorrelator grown on a (211)B GaAs substrate that uses visible surface-emitted second-harmonic generation is demonstrated. The (211)B orientation needs TE mode excitation only, thus eliminating the problem of the beating between the TE and TM modes that is required for (100)-grown devices; it also has the advantage of giving higher upconversion efficiency than (111) growth. Values of waveguide loss and the difference in the effective refractive index between the TE(0) and TE(1) modes were also obtained from the autocorrelation experiment.
Resumo:
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.
Resumo:
EuTe possesses the centrosymmetric crystal structure m3m of rocksalt type in which the second-harmonic generation is forbidden in electric dipole approximation but the third-harmonic generation (THG) is allowed. We studied the THG spectra of this material and observed several resonances in the vicinity of the band gap at 2.2-2.5 eV and at higher energies up to 4 eV, which are related to four-photon THG processes. The observed resonances are assigned to specific combinations of electronic transitions between the ground 4f(7) state at the top of the valence band and excited 4f(6)5d(1) states of Eu(2+) ions, which form the lowest energy conduction band. Temperature, magnetic field, and rotational anisotropy studies allowed us to distinguish crystallographic and magnetic-field-induced contributions to the THG. A strong modification of THG intensity for the 2.4 eV band and suppression of the THG for the 3.15 eV band was observed in applied magnetic field. Two main features of the THG spectra were assigned to 5d(t(2g)) and 5d(e(g)) subbands at 2.4 eV and 3.15 eV, respectively. A microscopic quantum-mechanical model of the THG response was developed and its conclusions are in qualitative agreement with the experimental results.
Resumo:
The third-harmonic optical susceptibility, chi((3))(3 omega; omega, omega, omega) of a silicate glass ceramic containing sodium niobate nanocrystals was measured for incident broadband light with central frequency omega corresponding to 1900nm. Absolute values of |chi((3))| and the dispersion of the refractive index from 600 to 1900nm were measured using the spectrally resolved femtosecond Maker fringes technique. The experiments show that |chi((3))| is 1 order of magnitude larger than silica, and it grows by similar to 50% when the volume fraction occupied by the nanocrystals increases up to 40%. (C) 2011 Optical Society of America
Resumo:
A series of new ruthenium(II) complexes of the general formula [Ru(eta(5)-C5H5)(PP)(L)][PF6] (PP = DPPE or 2PPh(3), L = 4-butoxybenzonitrile or N-(3-cyanophenyl)formamide) and the binuclear iron(II) complex [Fe(eta(5)-C5H5)(PP)(mu-L)(PP)(eta(5)-C5H5)Fe][PF6](2) (L = (E)-2-(3-(4-nitrophenyl)allylidene)malononitrile, that has been also newly synthesized) have been prepared and studied to evaluate their potential in the second harmonic generation property. All the new compounds were fully characterized by NMR, IR and UV-Vis spectroscopies and their electrochemistry behaviour was studied by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of three of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at fundamental wavelength of 1500 nm and the calculated static beta(0) values are found to fall in the range 65-212 x 10(-30) esu. Compound presenting beta(0) = 212 x 10(-30) esu has revealed to be 1.2 times more efficient than urea standard in the second harmonic generation (SHG) property, measured in the solid state by Kurtz powder technique, using a Nd:YAG laser (1064 nm). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Restricted Hartree-Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers - polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated
Resumo:
Wir entwickeln die Starkfeldnäherung für die Erzeugung hoher Harmonischer in Wasserstoffmolekülen, wobei die Vibrationsbewegung berücksichtigt wird, sowie die laserinduzierte Kopplung zwischen den beiden untersten Born-Oppenheimer-Zuständen im Molekülion, das durch die anfängliche Ionisation des Moleküls erzeugt wird. Wir zeigen, dass die Kopplung bei längeren Laserwellenlängen (≈ 2 μm) wichtig wird und zu einer Reduzierung der Erzeugung von Harmonischen führt, sowie zu einer Änderung des Verhältnisses von Harmonischen in verschiedenen Isotopen. ----------------------------------------------------------------------- We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules, including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing becomes important at long laser wavelengths (≈ 2 μm), leading to an overall reduction of harmonic generation and modifying the ratio of harmonic signals from different isotopes.