967 resultados para Seasonal cycle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed-layer salinity (MLS) budget in the tropical Indian Ocean is estimated from a combination of satellite products and in situ observations over the 2004-2012 period, to investigate the mechanisms controlling the seasonal MLS variability. In contrast with previous studies in the tropical Indian Ocean, our results reveal that the coverage, resolution, and quality of available observations are now sufficient to approach a closed monthly climatology seasonal salt budget. In the South-central Arabian Sea and South-western Tropical Indian Ocean (SCAS and STIO, respectively), where seasonal variability of the MLS is pronounced, the monthly MLS tendency terms are well captured by the diagnostic. In the SCAS region, in agreement with previous results, the seasonal cycle of the MLS is mainly due to meridional advection driven by the monsoon winds. In the STIO, contrasting previous results indicating the control of the meridional advection over the seasonal MLS budget, our results reveal the leading role of the freshwater flux due to precipitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to validate noninvasive endocrine monitoring techniques for Pampas deer and to evaluate seasonal changes in testicular steroidogenic activity and their correlation to reproductive behavior, antler cycle and group size. Thus, fecal samples, behavioral data and observations of antler status were collected at monthly intervals during 1 year from free-ranging Pampas deer stags (three radio-collared individuals and 15 random individuals) living in Emas National Park, Brazil (18 degrees S latitude). Fecal steroids were extracted using 80% methanol and steroid concentrations were quantified by a commercial enzyme immunoassay (EIA). Fecal testosterone concentrations peaked in December-January (summer), March (early autumn) and in August-September (winter-spring), with minimal values from April-July. Reproductive behavior had two peaks, the first in December-January, characterized by predominately anogenital sniffing, flehmen, urine sniffing, chasing and mounting behavior, and the second peak in July-September (behavior primarily related to gland marking). There were significant correlations between fecal testosterone and reproductive behavior (r = 0.490), and between fecal testosterone and antler phases (r = 0.239). Antler casting and regrowth occurred under low testosterone concentrations, whereas velvet shedding was associated with high concentrations of testosterone. We inferred that Pampas deer stags exhibited a seasonal cycle that modulated sexual behavior and the antler cycle, and we concluded that fecal steroid analysis was a practical and reliable non-invasive method for the evaluation of the endocrine status of free-ranging Pampas deer. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spermatogenesis and steroidogenesis undergo seasonal variations during the reproductive cycle in amphibians. Testicular morphological and morphometric seasonal variations as well as interstitial lipidic inclusions and intralobular glycoconjugates were evaluated during seasonal cycle of Rana catesbeiana. Testes of frogs collected during the annual seasons were weighed for calculation of GSI (Gonadosomatic index). Seminiferous lobule diameters (DSL) and volume densities of seminiferous lobules (VvSL), excretory ducts (VvED), and interstitial tissue (VvIT) were analyzed. Semithin sections were submitted to Periodic Acid-Schiff (PAS) and Alcian Blue (AB) methods for detection of glycoconjugates, while lipidic inclusions were detected by Sudan Black B. GSI showed no significant variations during the year. Since VvED and VvIT increased significantly during summer and were inversely proportional to VvSL, a compensatory effect between the testicular compartments may be related to the maintenance of GSI. During autumn/winter, larger lobular diameters were observed in comparison to spring/summer when spermiogenesis and spermiation were commonly observed. The increased VvIT and the numerous lipidic inclusions in the interstitial cells during summer suggest a relationship between spermiogenesis and steroidogenesis. Besides the structural stability variations occurring in the IT and SL, a possible paracrine interaction between ED and IT should be also involved in the IT development during summer. The presence of PAS and AB-positive globular structures were observed in the seminiferous lobules and excretory ducts. These structures containing acid glycoconjugates appear to be Sertoli cell apical portions, which are accumulated in the lumen of the seminiferous lobules mainly during spermiation. © 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate variability drives significant changes in the physical state of the North Pacific, and there may be important impacts of this variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models' upper ocean pCO(2) and air-sea CO(2) flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO(2) and its temperature- and non-temperature-driven components at three contrasting oceanographic sites capture the basic features found in observations (Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004). However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO(2) seasonal cycle because it results from the difference of these two large and opposing components. In all but one model, the air-sea CO(2) flux interannual variability (1 sigma) in the North Pacific is smaller ( ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific ( ranges across models from 0.08 to 0.19 PgC/yr), and the time series of the first or second EOF of the air-sea CO(2) flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO(2) flux anomalies are correlated with the PDO, their magnitudes are small ( up to +/- 0.025 PgC/yr ( 1 sigma)). Flux anomalies are damped because anomalies in the key drivers of pCO(2) ( temperature, dissolved inorganic carbon (DIC), and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO(2) anomalies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Daily and seasonal activity rhythms, swimming speed, and modes of swimming were studied in a school of spring-spawned age-0 bluefish (Pomatomus saltatrix) for nine months in a 121-kL research aquarium. Temperature was lowered from 20° to 15°C, then returned to 20°C to match the seasonal cycle. The fish grew from a mean 198 mm to 320 mm (n= 67). Bluefish swam faster and in a more organized school during day (overall mean 47 cm/s) than at night (31 cm/s). Swimming speed declined in fall as temperature declined and accelerated in spring in response to change in photoperiod. Besides powered swimming, bluefish used a gliding-upswimming mode, which has not been previously described for this species. To glide, a bluefish rolled onto its side, ceased body and tail beating, and coasted diagonally downward. Bluefish glided in all months of the study, usually in the dark, and most intensely in winter. Energy savings while the fish is gliding and upswimming may be as much as 20% of the energy used in powered swimming. Additional savings accrue from increased lift due to the hydrofoil created by the horizontal body orientation and slightly concave shape. Energy-saving swimming would be advantageous during migration and overwintering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Variations in the total liver cholesterol content of Heteropnuestes fossilis followed well defined seasonal cycle. A decline was recorded during the period when the gonads were passing through the peak ripe stage. The highest value of the cholesterol was however attained before this phase of gonad maturation. Concentration pattern of liver cholesterol seemed related to variations in the cholesterol metabolism of the fish, necessitated, besides other factors, by the demand for sex hormones. A possibility of the influence of feeding intensity on liver cholesterol content has also been indicated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Charts are presented of the seasonal variations in the distribution of four phytoplankton and five zooplankton taxa in the North Atlantic and the North Sea. The main factors determining the seasonal variations appear to be the distribution of the main overwintering stocks, the current system and, in some instances, temperature control of the rate of population increase. Information is presented about the variation with latitude (over the range from 34° N to 65 ° N) of the seasonal regime of the plankton. On the assumption that there is a relationship between nutrient supply and vertical temperature stratification the main features of this variability can be interpreted. In the south (to about 43° N) nutrient limitation plus grazing appear to be dominant, resulting in a bimodal seasonal cycle of phytoplankton. North of about 60° N the system appears to be limited by the size of the phytoplankton stocks being grazed primarily by Calanus Finmarchicus and Euphausiacea. In an extensive zone, from about 44° N to 60° N, it would appear that the spring bloom of phytoplankton is under-exploited by grazing while in summer the zooplankton graze the daily production of the phytoplankton, the stocks of which are probably maintained by in situ nutrient regeneration. The implications, for at least this mid-latitude zone, that rates and fluxes of processes, as opposed to density dependent interactions between stocks, play a major role in the dynamics of the seasonal cycle is consistent with previously reported observations suggesting that physical environmental factors play a major role in determining year-to-year fluctuations in the abundance of the plankton.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação de Mestrado, Estudos Marinhos e Costeiros, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009