959 resultados para Search Engine
Resumo:
Il panorama delle aziende italiane è costellato da una moltitudine di piccoli attori largamente specializzati in mansioni definite. Sono le piccole e le medie imprese (PMI), aziende per lo più familiari e con meno di qualche decina di dipendenti, talvolta con un'importante storia alle loro spalle che, nonostante la crisi e l'avvento di Internet, sono riuscite a rimanere leader incontrastati nel loro settore. È proprio Internet infatti uno dei pericoli più grandi per esse. Settori che in passato erano presenti offline, negli uffici dove ci si rivolgeva per l'erogazione del servizio richiesto, oggi godono di una fortissima se non predominante attività online, come il settore della ricerca e della selezione del personale. Questo settore, in particolare, ha subito tutta l'influenza di Internet. Annunci, ricerche di lavoro, consulenze, sono quasi totalmente presenti attraverso il canale online. Tale cambiamento ha portato ad una scossa nel mercato, cambiando le modalità di offerta e di domanda dei servizi, determinando chi dovesse sopravvivere e chi no. È Internet stessa ad offrire uno strumento fondamentale per la rivalutazione delle proprie attività e il ritorno di piccole imprese a guidare il mercato, soprattutto nelle realtà locali. Riuscire ad avere il coraggio di affrontare il cambiamento che Internet impone, riorganizzando il proprio lavoro e la propria struttura, è oggi un trampolino di lancio per competere con i grandi head hunter del settore, con aziende del calibro di Monster che sembrano ormai irrangiungibili. Li pensiamo irrangiungibili perché dominanti nei motori di ricerca: sistemi che veicolano attraverso di essi l'informazione e che oggi sono lo strumento che tutti noi quotidianamente utilizziamo per raggiungere le aziende e i loro servizi. I motori di ricerca sono però anche il luogo più democratico della rete. Non sono i soldi o la forza numerica data dell'essere una grande azienda a determinare il posizionamento in essi. È invece la capacità di inviduare e focalizzare il proprio core business che offre la possibilità di primeggiare tra le realtà locali, siano esse a livello provinciale o regionale ad esempio. In queste realtà, in questi settori, non sono i grandi attori internazionali ad avere più possibilità di successo ma sono le attività vicine al territorio ad esserne i leader. Capire questo e agire sulle leve che permettano alle PMI di dirigere il mercato è l'obiettivo di questa tesi. La tesi inizia con una analisi dei principali motori di ricerca italiani, di come sono strutturati e come essi riescono a valutare chi possa essere presente per una determinata keyword e chi non possa esserlo ma soprattutto la qualità attribuita e la posizione assunta. L'argomentazione viene sviluppata su due differenti percorsi: il primo analitico, dove vengono presentati i motori di ricerca, i loro algoritmi, la loro storia e la loro evoluzione futura, per capire come poter essere presenti oggi e come poter esserlo domani. La seconda parte è invece operativa, analizzando Teseo: un'agenzia di ricerca e selezione del personale operante a livello regionale nell'Emilia Romagna e fortemente specializzata in alcune attività molto specifiche. E' stato prodotto un prototipo di sito studiando i punti di forza e le debolezze di sistemi come WordPress e, infine, il lavoro punta alla sua messa online, al confronto tra i risultati raggiunti dal vecchio sito e quelli ottenuti con il nuovo, con una parte finale dedicata a delle attività collaterali e alla valutazione di strategie future sul lungo periodo. Nel settore della ricerca e della selezione del personale via Internet, come può una PMI sopravvivere contro i grandi head hunter?
Resumo:
La presente tesi illustra e discute due attività legate all'ambito dei siti web, ovvero la localizzazione e l'ottimizzazione per i motori di ricerca (o SEO, dall'inglese "Search Engine Optimization"). Quest'ultima è un'attività mirata a permettere che i siti stessi ottengano un posizionamento migliore nella pagina dei risultati dei motori di ricerca e siano dunque più visibili agli utenti. Poiché la SEO prevede vari interventi sui siti web, alcuni dei quali implicano la manipolazione di codice HTML, essa viene spesso considerata come un'attività strettamente informatica. L'obiettivo della presente tesi, dunque, è quello di illustrare come i traduttori possano sfruttare le proprie competenze linguistiche per dedicarsi non soltanto alla localizzazione di siti web, ma anche alla loro ottimizzazione per i motori di ricerca. Per dimostrare l'applicabilità di tali tecniche è stato utilizzato come esempio pratico il sito web de "Il Palio di San Donato", un sito gestito dal Comune di Cividale del Friuli e finalizzato alla descrizione dell'omonima rievocazione storica cittadina. La tesi si compone di quattro capitoli. Nel primo capitolo vengono introdotti i principi teorici alla base della localizzazione di siti web, della SEO, della scrittura per il web e della traduzione per il settore turistico. Nel secondo capitolo, invece, viene descritto il sito del Palio di San Donato, esaminandone in particolare la struttura e i contenuti. Il terzo capitolo è dedicato alla descrizione del progetto di localizzazione a cui è stato sottoposto il sito in esame. Infine, il quarto capitolo contiene un breve commento relativo alle problematiche linguistiche, culturali e tecnologiche riscontrate durante il processo traduttivo e un elenco di strategie di SEO applicate a cinque pagine del sito web in esame, selezionate sulla base della possibilità di illustrare il maggior numero possibile di interventi di SEO attuabili dai traduttori.
Resumo:
Ce mémoire a comme objectif de montrer le processus de localisation en langue italienne d’un site Internet français, celui du Parc de loisir du Lac de Maine. En particulier, le but du mémoire est de démontrer que, lorsqu’on parle de localisation pour le Web, on doit tenir compte de deux facteurs essentiels, qui contribuent de manière exceptionnelle au succès du site sur le Réseau Internet. D’un côté, l’utilisabilité du site Web, dite également ergonomie du Web, qui a pour objectif de rendre les sites Web plus aisés d'utilisation pour l'utilisateur final, de manière que son rapprochement au site soit intuitif et simple. De l’autre côté, l’optimisation pour les moteurs de recherche, couramment appelée « SEO », acronyme de son appellation anglais, qui cherche à découvrir les meilleures techniques visant à optimiser la visibilité d'un site web dans les pages de résultats de recherche. En améliorant le positionnement d'une page web dans les pages de résultats de recherche des moteurs, le site a beaucoup plus de possibilités d’augmenter son trafic et, donc, son succès. Le premier chapitre de ce mémoire introduit la localisation, avec une approche théorique qui en illustre les caractéristiques principales ; il contient aussi des références à la naissance et l’origine de la localisation. On introduit aussi le domaine du site qu’on va localiser, c’est-à-dire le domaine du tourisme, en soulignant l’importance de la langue spéciale du tourisme. Le deuxième chapitre est dédié à l’optimisation pour les moteurs de recherche et à l’ergonomie Web. Enfin, le dernier chapitre est consacré au travail de localisation sur le site du Parc : on analyse le site, ses problèmes d’optimisation et d’ergonomie, et on montre toutes les phases du processus de localisation, y compris l’intégration de plusieurs techniques visant à améliorer la facilité d’emploi par les utilisateurs finaux, ainsi que le positionnement du site dans les pages de résultats des moteurs de recherche.
Resumo:
La tesi tratta i concetti fondamentali legati alla "Search Engine Optimization", ovvero all’ottimizzazione dei siti web per i motori di ricerca. La SEO è un’attività multidisciplinare che coinvolge aspetti tecnici dello sviluppo web e princìpi di web marketing, allo scopo di migliorare la visibilità di un sito nelle pagine di risposta di un motore di ricerca. All’interno dell’elaborato viene analizzato dapprima il funzionamento dei motori di ricerca, con particolare riferimento al mondo Google; in seguito vengono esaminate le diverse tecniche di ottimizzazione “on-page” di un sito (codice, architettura, contenuti) e le strategie “off-page” volte a migliorare reputazione, popolarità e autorevolezza del sito stesso.
Resumo:
On 3 April 2012, the Spanish Supreme Court issued a major ruling in favour of the Google search engine, including its ‘cache copy’ service: Sentencia n.172/2012, of 3 April 2012, Supreme Court, Civil Chamber.* The importance of this ruling lies not so much in the circumstances of the case (the Supreme Court was clearly disgusted by the claimant’s ‘maximalist’ petitum to shut down the whole operation of the search engine), but rather on the court going beyond the text of the Copyright Act into the general principles of the law and case law, and especially on the reading of the three-step test (in Art. 40bis TRLPI) in a positive sense so as to include all these principles. After accepting that none of the limitations listed in the Spanish Copyright statute (TRLPI) exempted the unauthorized use of fragments of the contents of a personal website through the Google search engine and cache copy service, the Supreme Court concluded against infringement, based on the grounds that the three-step test (in Art. 40bis TRLPI) is to be read not only in a negative manner but also in a positive sense so as to take into account that intellectual property – as any other kind of property – is limited in nature and must endure any ius usus inocui (harmless uses by third parties) and must abide to the general principles of the law, such as good faith and prohibition of an abusive exercise of rights (Art. 7 Spanish Civil Code).The ruling is a major success in favour of a flexible interpretation and application of the copyright statutes, especially in the scenarios raised by new technologies and market agents, and in favour of using the three-step test as a key tool to allow for it.
Resumo:
For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.
Resumo:
Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.
Resumo:
ACM Computing Classification System (1998): H3.3, H.5.5, J5.
Resumo:
This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.
Resumo:
This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Lawrence and Giles [1] eloquently define the current problems with the World-Wide Web, but could "Nature" provide the solution ?
Resumo:
Throughout the last years technologic improvements have enabled internet users to analyze and retrieve data regarding Internet searches. In several fields of study this data has been used. Some authors have been using search engine query data to forecast economic variables, to detect influenza areas or to demonstrate that it is possible to capture some patterns in stock markets indexes. In this paper one investment strategy is presented using Google Trends’ weekly query data from major global stock market indexes’ constituents. The results suggest that it is indeed possible to achieve higher Info Sharpe ratios, especially for the major European stock market indexes in comparison to those provided by a buy-and-hold strategy for the period considered.