904 resultados para Science and the humanities
Resumo:
Food security is one of this century’s key global challenges. By 2050 the world will require increased crop production in order to feed its predicted 9 billion people. This must be done in the face of changing consumption patterns, the impacts of climate change and the growing scarcity of water and land. Crop production methods will also have to sustain the environment, preserve natural resources and support livelihoods of farmers and rural populations around the world. There is a pressing need for the ‘sustainable intensifi cation’ of global agriculture in which yields are increased without adverse environmental impact and without the cultivation of more land. Addressing the need to secure a food supply for the whole world requires an urgent international effort with a clear sense of long-term challenges and possibilities. Biological science, especially publicly funded science, must play a vital role in the sustainable intensifi cation of food crop production. The UK has a responsibility and the capacity to take a leading role in providing a range of scientifi c solutions to mitigate potential food shortages. This will require signifi cant funding of cross-disciplinary science for food security. The constraints on food crop production are well understood, but differ widely across regions. The availability of water and good soils are major limiting factors. Signifi cant losses in crop yields occur due to pests, diseases and weed competition. The effects of climate change will further exacerbate the stresses on crop plants, potentially leading to dramatic yield reductions. Maintaining and enhancing the diversity of crop genetic resources is vital to facilitate crop breeding and thereby enhance the resilience of food crop production. Addressing these constraints requires technologies and approaches that are underpinned by good science. Some of these technologies build on existing knowledge, while others are completely radical approaches, drawing on genomics and high-throughput analysis. Novel research methods have the potential to contribute to food crop production through both genetic improvement of crops and new crop and soil management practices. Genetic improvements to crops can occur through breeding or genetic modifi cation to introduce a range of desirable traits. The application of genetic methods has the potential to refi ne existing crops and provide incremental improvements. These methods also have the potential to introduce radical and highly signifi cant improvements to crops by increasing photosynthetic effi ciency, reducing the need for nitrogen or other fertilisers and unlocking some of the unrealised potential of crop genomes. The science of crop management and agricultural practice also needs to be given particular emphasis as part of a food security grand challenge. These approaches can address key constraints in existing crop varieties and can be applied widely. Current approaches to maximising production within agricultural systems are unsustainable; new methodologies that utilise all elements of the agricultural system are needed, including better soil management and enhancement and exploitation of populations of benefi cial soil microbes. Agronomy, soil science and agroecology—the relevant sciences—have been neglected in recent years. Past debates about the use of new technologies for agriculture have tended to adopt an either/or approach, emphasising the merits of particular agricultural systems or technological approaches and the downsides of others. This has been seen most obviously with respect to genetically modifi ed (GM) crops, the use of pesticides and the arguments for and against organic modes of production. These debates have failed to acknowledge that there is no technological panacea for the global challenge of sustainable and secure global food production. There will always be trade-offs and local complexities. This report considers both new crop varieties and appropriate agroecological crop and soil management practices and adopts an inclusive approach. No techniques or technologies should be ruled out. Global agriculture demands a diversity of approaches, specific to crops, localities, cultures and other circumstances. Such diversity demands that the breadth of relevant scientific enquiry is equally diverse, and that science needs to be combined with social, economic and political perspectives. In addition to supporting high-quality science, the UK needs to maintain and build its capacity to innovate, in collaboration with international and national research centres. UK scientists and agronomists have in the past played a leading role in disciplines relevant to agriculture, but training in agricultural sciences and related topics has recently suffered from a lack of policy attention and support. Agricultural extension services, connecting farmers with new innovations, have been similarly neglected in the UK and elsewhere. There is a major need to review the support for and provision of extension services, particularly in developing countries. The governance of innovation for agriculture needs to maximise opportunities for increasing production, while at the same time protecting societies, economies and the environment from negative side effects. Regulatory systems need to improve their assessment of benefits. Horizon scanning will ensure proactive consideration of technological options by governments. Assessment of benefi ts, risks and uncertainties should be seen broadly, and should include the wider impacts of new technologies and practices on economies and societies. Public and stakeholder dialogue—with NGOs, scientists and farmers in particular—needs to be a part of all governance frameworks.
Resumo:
Nature conservation may be considered a post-normal science in that the loss of biodiversity and increasing environmental degradation require urgent action but are characterised by uncertainty at every level. An ‘extended peer community’ with varying skills, perceptions and values are involved in decision-making and implementation of conservation, and the uncertainty involved limits the effectiveness of practice. In this paper we briefly review the key ecological, philosophical and methodological uncertainties associated with conservation, and then highlight the uncertainties and gaps present within the structure and interactions of the conservation community, and which exist mainly between researchers and practitioners, in the context of nature conservation in the UK. We end by concluding that an openly post-normal science framework for conservation, which acknowledges this uncertainty but strives to minimise it, would be a useful progression for nature conservation, and recommend ways in which knowledge transfer between researchers and practitioners can be improved to support robust decision making and conservation enactment.
Resumo:
This article demonstrates for the first time how dense the references to science are within the Pre-Raphaelite periodical 'The Germ' (1850). By reading the essays from this magazine together, as they were first published, it is possible to see how thoroughly the Pre-Raphaelites theorised their artistic project in terms of a particular mid-Victorian ideal of science. At the same time, the magazine became a forum in which the question of how far the arts ought to take account of science could be debated. In this debate, the competing visions of Pre-Raphaelitism discussed in Holman Hunt’s later accounts of the movement can be seen emerging at a very early stage in its history.
Resumo:
This thesis addresses the problem of the academic identity of the area traditionally referred to as physical education. The study is a critical examination of the argu ments for the justi cation of this area as an autonomous branch of knowledge. The investigation concentrates on a selected number of arguments. The data collection comprised articles books and proceedings of conferences. The preliminary assessment of these materials resulted in a classi cation of the arguments into three groups. The rst group comprises the arguments in favour of physical education as an academic discipline. The second includes the arguments supporting a science of sport. The third consists of the arguments in favour of to a eld of human movement study. The examination of these arguments produced the following results. (a) The area of physical education does not satisfy the conditions presupposed by the de nition of academic discipline. This is so because the area does not form an integrated system of scienti c theories. (b) The same di culty emerges from the examination of the ar guments for sport science. There is no science of sport because there is no integrated system of scienti c theories related to sport. (c) The arguments in favour of a eld of study yielded more productive results. However di culties arise from the de nition of human movement. The analysis of this concept showed that its limits are not well demarcated. This makes it problematic to take human movement as the focus of a eld of studies. These aspects led to the conclusion that such things as an academic discipline of physical education sport science and eld of human movement studies do not exist. At least there are not such things in the sense of autonomous branches of knowledge. This does not imply that a more integrated inquiry based on several disciplines is not possible and desirable. This would enable someone entering phys ical education to nd a more organised structure of knowledge with some generally accepted problem situations procedures and theories on which to base professional practice.
Resumo:
As I write this on the first business day of 2010, I find myself thinking about the importance of respecting alternative views --- not only alternative political views, but also alternative scientific views. Good science requires that we understand the limits of knowledge and continuously seek the truth through respectful questioning, replication and review. In the climate change debate, which recently culminated in a disappointing and largely ineffective conference in Copenhagen, these salient principles of science were grossly violated. Well respected climate scientists proceeded well beyond the limits of their knowledge and became policy advocates. They demeaned anyone who dared to disagree with their findings or to suggest that limiting CO2 emissions may not be the best policy choice at the present time. Disagreeing with the “experts” became disrespected professional behavior, even within the academic community. This approach has not served the interests of anyone very well.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.