983 resultados para Science Inquiry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic processwithout a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the teaching and learning process in mathematics but has been used in other disciplinary fields. It will be used in this work in order to clear up the main obstacles in the teachinglearning process of geometric optics. We proceed to argue that since Newton’s approach to optics, in his Book I of Opticks, is independent of the corpuscular or undulatory nature of light, it is the most suitable for a constructivist learning environment. However, Newton’s theory must be subject to a proper didactic transposition to help overcome the referred alternative concepts. Then is described our didactic transposition in order to create knowledge to be taught using a dialogical process between students’ previous knowledge, history of optics and the desired outcomes on geometrical optics in an elementary pre-service teacher training course. Finally, we use the scheme-facet structure of knowledge both to analyse and discuss our results as well as to illuminate shortcomings that must be addressed in our next stage of the inquiry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how blogs can support collaborative learning is a vital concern for researchers and teachers. This paper explores how blogs may be used to support Secondary Education students’ collaborative interaction and how such an interaction process can promote the creation of a Community of Inquiry to enhance critical thinking and meaningful learning. We designed, implemented and evaluated a science case-based project in which fifteen secondary students participated. Students worked in the science blogging project during 4 months. We asked students to be collaboratively engaged in purposeful critical discourse and reflection in their blogs in order to solve collectively science challenges and construct meaning about topics related to Astronomy and Space Sciences. Through student comments posted in the blog, our findings showed that the blog environment afforded the construction of a Community of Inquiry and therefore the creation of an effective online collaborative learning community. In student blog comments, the three presences for collaborative learning took place: cognitive, social, and teaching presence. Moreover, our research found a positive correlation among the three presences –cognitive, social and teaching– of the Community of Inquiry model with the level of learning obtained by the students. We discuss a series of issues that instructors should consider when blogs are incorporated into teaching and learning. We claim that embedded scaffolds to help students to argue and reason their comments in the blog are required to foster blog-supported collaborative learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Educational institutions are not being effective, because they do not give individuals what they need to integrate into postmodern society, nor produce citizens that postmodern society needs. Shortcomings include the scientific literacy and cognitive domain levels attained, with an aggravating waning interest in science among pre-university students. We present an inquiry module, an inquiry dynamic, as an education resource for the study of perturbations of a chemical equilibrium state by pre-university or university students of basic chemistry, to contribute to the relevance and popularity of science, potentiation of science literacy and development of cognition. Here we describe an investigation with pre-university students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vers la fin du 19ème siècle, le moine et réformateur hindou Swami Vivekananda affirma que la science moderne convergeait vers l'Advaita Vedanta, un important courant philosophique et religieux de l'hindouisme. Au cours des décennies suivantes, suite aux apports scientifiques révolutionnaires de la théorie de la relativité d'Einstein et de la physique quantique, un nombre croissant d'auteurs soutenaient que d'importants "parallèles" pouvaient être tracés entre l'Advaita Vedanta et la physique moderne. Encore aujourd'hui, de tels rapprochements sont faits, particulièrement en relation avec la physique quantique. Cette thèse examine de manière critique ces rapprochements à travers l'étude comparative détaillée de deux concepts: le concept d'akasa dans l'Advaita Vedanta et celui de vide en physique quantique. L'énoncé examiné est celui selon lequel ces deux concepts pointeraient vers une même réalité: un substratum omniprésent et subtil duquel émergent et auquel retournent ultimement les divers constituants de l'univers. Sur la base de cette étude comparative, la thèse argumente que des comparaisons de nature conceptuelle favorisent rarement la mise en place d'un véritable dialogue entre l'Advaita Vedanta et la physique moderne. Une autre voie d'approche serait de prendre en considération les limites épistémologiques respectivement rencontrées par ces disciplines dans leur approche du "réel-en-soi" ou de la "réalité ultime." Une attention particulière sera portée sur l'épistémologie et le problème de la nature de la réalité dans l'Advaita Vedanta, ainsi que sur le réalisme scientifique et les implications philosophiques de la non-séparabilité en physique quantique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of primary science education is to foster children’s interest, develop positive science attitudes and promote science process skills development. Learning by playing and discovering provides several opportunities for children to inquiry and understand science based on the first–hand experience. The current research was conducted in the children’s laboratory in Heureka, the Finnish science centre. Young children (aged 7 years) which came from 4 international schools did a set of chemistry experiments in the laboratory. From the results of the cognitive test, the pre-test, the post-test, supported by observation and interview, we could make the conclusion that children enjoyed studying in the laboratory. Chemistry science was interesting and fascinating for young children; no major gender differences were found between boys and girls learning in the science laboratory. Lab work not only encouraged children to explore and investigate science, but also stimulated children’s cognitive development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses the problem of the academic identity of the area traditionally referred to as physical education. The study is a critical examination of the argu ments for the justi cation of this area as an autonomous branch of knowledge. The investigation concentrates on a selected number of arguments. The data collection comprised articles books and proceedings of conferences. The preliminary assessment of these materials resulted in a classi cation of the arguments into three groups. The rst group comprises the arguments in favour of physical education as an academic discipline. The second includes the arguments supporting a science of sport. The third consists of the arguments in favour of to a eld of human movement study. The examination of these arguments produced the following results. (a) The area of physical education does not satisfy the conditions presupposed by the de nition of academic discipline. This is so because the area does not form an integrated system of scienti c theories. (b) The same di culty emerges from the examination of the ar guments for sport science. There is no science of sport because there is no integrated system of scienti c theories related to sport. (c) The arguments in favour of a eld of study yielded more productive results. However di culties arise from the de nition of human movement. The analysis of this concept showed that its limits are not well demarcated. This makes it problematic to take human movement as the focus of a eld of studies. These aspects led to the conclusion that such things as an academic discipline of physical education sport science and eld of human movement studies do not exist. At least there are not such things in the sense of autonomous branches of knowledge. This does not imply that a more integrated inquiry based on several disciplines is not possible and desirable. This would enable someone entering phys ical education to nd a more organised structure of knowledge with some generally accepted problem situations procedures and theories on which to base professional practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to assess preservice teachers self-efficacy at different stages of their educational career in an attempt to determine the extent to which self-efficacy beliefs may change over time. In addition, the critical incidents, which may contribute to changes in self-efficacy, were also investigated. The instrument used in the study was the Teaching Science as Inquiry (TSI) Instrument. The TSI Instrument was administered to 38 preservice elementary teachers to measure the self-efficacy beliefs of the teacher participants in regard to the teaching of science as inquiry. Based on the results and the associated data analysis, mean and median values demonstrate positive change for self-efficacy and outcome expectancy throughout the data collection period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Increasing attention is being paid to improvement in undergraduate science, technology, engineering, and mathematics (STEM) education through increased adoption of research-based instructional strategies (RBIS), but high-quality measures of faculty instructional practice do not exist to monitor progress. Purpose/Hypothesis The measure of how well an implemented intervention follows the original is called fidelity of implementation. This theory was used to address the research questions: What is the fidelity of implementation of selected RBIS in engineering science courses? That is, how closely does engineering science classroom practice reflect the intentions of the original developers? Do the critical components that characterize an RBIS discriminate between engineering science faculty members who claimed use of the RBIS and those who did not? Design/Method A survey of 387 U.S. faculty teaching engineering science courses (e.g., statics, circuits, thermodynamics) included questions about class time spent on 16 critical components and use of 11 corresponding RBIS. Fidelity was quantified as the percentage of RBIS users who also spent time on corresponding critical components. Discrimination between users and nonusers was tested using chi square. Results Overall fidelity of the 11 RBIS ranged from 11% to 80% of users spending time on all required components. Fidelity was highest for RBIS with one required component: case-based teaching, just-in-time teaching, and inquiry learning. Thirteen of 16 critical components discriminated between users and nonusers for all RBIS to which they were mapped. Conclusions Results were consistent with initial mapping of critical components to RBIS. Fidelity of implementation is a potentially useful framework for future work in STEM undergraduate education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper assesses possible contributions of land change science to the growing body of knowledge about large-scale land acquisition. Despite obvious commonalities, such as a problem-oriented and interdisciplinary approach to land change, there seems to be little overlap between the two fields thus far. We adopt a sustainability research perspective — an important feature of land change science — to review research questions about large-scale land acquisition that are currently being addressed, and to define questions for further inquiry. Possible contributions of land change science toward more sustainable land investments are based on understanding land use change not only as a consequence, but also as a cause of large-scale land acquisition and as a solution to the problems land acquisition can create.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A workflow flowchart on the verification steps involved in preparation to uploading assets to the University of Connecticut's institutional repository (http://digitalcommons.uconn.edu). This flowchart is geared towards assisting subject liaisons who also serve as series administrators for UConn@DigitalCommons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The educational platform Virtual Science Hub (ViSH) has been developed as part of the GLOBAL excursion European project. ViSH (http://vishub.org/) is a portal where teachers and scientist interact to create virtual excursions to science infrastructures. The main motivation behind the project was to connect teachers - and in consequence their students - to scientific institutions and their wide amount of infrastructures and resources they are working with. Thus the idea of a hub was born that would allow the two worlds of scientists and teachers to connect and to innovate science teaching. The core of the ViSH?s concept design is based on virtual excursions, which allow for a number of pedagogical models to be applied. According to our internal definition a virtual excursion is a tour through some digital context by teachers and pupils on a given topic that is attractive and has an educational purpose. Inquiry-based learning, project-based and problem-based learning are the most prominent approaches that a virtual excursion may serve. The domain specific resources and scientific infrastructures currently available on the ViSH are focusing on life sciences, nano-technology, biotechnology, grid and volunteer computing. The virtual excursion approach allows an easy combination of these resources into interdisciplinary teaching scenarios. In addition, social networking features support the users in collaborating and communicating in relation to these excursions and thus create a community of interest for innovative science teaching. The design and development phases were performed following a participatory design approach. An important aspect in this process was to create design partnerships amongst all actors involved, researchers, developers, infrastructure providers, teachers, social scientists, and pedagogical experts early in the project. A joint sense of ownership was created and important changes during the conceptual phase were implemented in the ViSH due to early user feedback. Technology-wise the ViSH is based on the latest web technologies in order to make it cross-platform compatible so that it works on several operative systems such as Windows, Mac or Linux and multi-device accessible, such as desktop, tablet and mobile devices. The platform has been developed in HTML5, the latest standard for web development, assuring that it can run on any modern browser. In addition to social networking features a core element on the ViSH is the virtual excursions editor. It is a web tool that allows teachers and scientists to create rich mash-ups of learning resources provided by the e-Infrastructures (i.e. remote laboratories and live webcams). These rich mash-ups can be presented in either slides or flashcards format. Taking advantage of the web architecture supported, additional powerful components have been integrated like a recommendation engine to provide personalized suggestions about educational content or interesting users and a videoconference tool to enhance real-time collaboration like MashMeTV (http://www.mashme.tv/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on examples of educational tools concerning the learning of chemistry for engineering students through different daily life cases. These tools were developed during the past few years for enhancing the active role of students. They refer to cases about mineral water, medicaments, dentifrices and informative panels about solar power, where an adequate quantitative treatment through stoichiometry calculations allows the interpretation of data and values announced by manufacturers. These cases were developed in the context of an inquiry-guided instruction model. By bringing tangible chemistry examples into the classroom we provide an opportunity for engineering students to apply this science to familiar products in hopes that they will appreciate chemistry more, will be motivated to study concepts in greater detail, and will connect the relevance of chemistry to everyday life.