916 resultados para Scan rates


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behavior of flavine adenine dinucleotide (FAD) at a gold electrode involving adsorption of the reduced form FADH(2) and desorption of the oxidized form FAD has been studied by using electrochemical quartz crystal microbalance (EQCM). EQCM can present information not only about the electrochemical behavior but also about the mass changes on the electrode surface. The electrochemical properties and frequency shifts were investigated in FAD solutions at different pH values, concentrations and scan rates. Reversible voltammograms were observed when pH<4.5 and irreversible voltammograms were found when pH greater than or equal to 4.5. It is found to be a diffusion controlled process when the concentration of FAD is lower than 2x10(-4) moll(-1) (pH 1.5). On the contrary, at concentrations higher than 2x10(-4) moll(-1) (pH 1.5), it is found to be an adsorption controlled process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behaviour of TCNQ modified S-BLM has been investigated through capacitor measurement and cyclic voltammetry (CV) which shows the surface wave behaviour of the TCNQ redox form. The voltammetry CV has shown different pairs peak at different scan rates and a possible explanation is provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrated nanowire electrodes that permit direct, sensitive and rapid electrochemical based detection of chemical and biological species are a powerful emerging class of sensor devices. As critical dimensions of the electrodes enter the nanoscale, radial analyte diffusion profiles to the electrode dominate with a corresponding enhancement in mass transport, steady-state sigmoidal voltammograms, low depletion of target molecules and faster analysis. To optimise these sensors it is necessary to fully understand the factors that influence performance limits including: electrode geometry, electrode dimensions, electrode separation distances (within nanowire arrays) and diffusional mass transport. Therefore, in this thesis, theoretical simulations of analyte diffusion occurring at a variety of electrode designs were undertaken using Comsol Multiphysics®. Sensor devices were fabricated and corresponding experiments were performed to challenge simulation results. Two approaches for the fabrication and integration of metal nanowire electrodes are presented: Template Electrodeposition and Electron-Beam Lithography. These approaches allow for the fabrication of nanowires which may be subsequently integrated at silicon chip substrates to form fully functional electrochemical devices. Simulated and experimental results were found to be in excellent agreement validating the simulation model. The electrochemical characteristics exhibited by nanowire electrodes fabricated by electronbeam lithography were directly compared against electrochemical performance of a commercial ultra-microdisc electrode. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid at single ultra-microdisc electrodes were observed at low to medium scan rates (≤ 500 mV.s-1). At nanowires, steady-state responses were observed at ultra-high scan rates (up to 50,000 mV.s-1), thus allowing for much faster analysis (20 ms). Approaches for elucidating faradaic signal without the requirement for background subtraction were also developed. Furthermore, diffusional process occurring at arrays with increasing inter-electrode distance and increasing number of nanowires were explored. Diffusion profiles existing at nanowire arrays were simulated with Comsol Multiphysics®. A range of scan rates were modelled, and experiments were undertaken at 5,000 mV.s-1 since this allows rapid data capture required for, e.g., biomedical, environmental and pharmaceutical diagnostic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using Si(100) with different dopant type (n++-type (As) or p-type (B)), it is shown how metal-assisted chemically (MAC) etched silicon nanowires (Si NWs) can form with rough outer surfaces around a solid NW core for p-type NWs, and a unique, defined mesoporous structure for highly doped n-type NWs. High resolution electron microscopy techniques were used to define the characteristic roughening and mesoporous structure within the NWs and how such structures can form due to a judicious choice of carrier concentration and dopant type. Control of roughness and internal mesoporosity is demonstrated during the formation of Si NWs from highly doped n-type Si(100) during electroless etching through a systematic investigation of etching parameters (etching time, AgNO3 concentration, %HF and temperature). Raman scattering measurements of the transverse optical phonon confirm quantum size effects and phonon scattering in mesoporous wires associated with the etching condition, including quantum confinement effects for the nanocrystallites of Si comprising the internal structure of the mesoporous NWs. Laser power heating of NWs confirms phonon confinement and scattering from internal mesoporosity causing reduced thermal conductivity. The Li+ insertion and extraction characteristics at n-type and p-type Si(100) electrodes with different carrier density and doping type are investigated by cyclic voltammetry and constant current measurements. The insertion and extraction potentials are demonstrated to vary with cycling and the occurrence of an activation effect is shown in n-type electrodes where the charge capacity and voltammetric currents are found to be much higher than p-type electrodes. X-ray photo-electron spectroscopy (XPS) and Raman scattering demonstrate that highly doped n-type Si(100) retains Li as a silicide and converts to an amorphous phase as a two-step phase conversion process. The findings show the succinct dependence of Li insertion and extraction processes for uniformly doped Si(100) single crystals and how the doping type and its effect on the semiconductor-solution interface dominate Li insertion and extraction, composition, crystallinity changes and charge capacity. The effect of dopant, doping density and porosity of MAC etched Si NWs are investigated. The CV response is shown to change in area (current density) with increasing NW length and in profile shape with a changing porosity of the Si NWs. The CV response also changes with scan rate indicative of a transition from intercalation or alloying reactions, to pseudocapactive charge storage at higher scan rates and for p-type NWs. SEM and TEM show a change in structure of the NWs after Li insertion and extraction due to expansion and contraction of the Si NWs. Galvanostatic measurements show the cycling behavior and the Coulombic efficiency of the Si NWs in comparison to their bulk counterparts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The voltammetry for the reduction of oxygen at a microdisk electrode is reported in six commonly used RTILs: [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)dmim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], and [N-6.2.2.2][NTf2], where [C(4)mim](+) is 1-butyl-3-methylimidazolium, [NTf2](-) is bis(trifluoromethanesulfonyl)imide, [C(4)mpyrr](+) is N-butyl-N-methylpyrrolidinium, [C(4)dmim](+) is 1-butyl-2,3-methylimidazolium, [BF4](-) is tetrafluoroborate, [PF6](-) is hexafluorophosphate, and [N-6.2.2.2](+) is n-hexyltriethylammonium at varying scan rates (50-4000 mV s(-1)) and temperatures (293-318 K). Diffusion coefficients, D, of oxygen are deduced at each temperature from potential-step chronoamperometry, and diffusional activation energies are calculated. Oxygen solubilities are also reported as a function of temperature. In the six ionic liquids, the Stokes-Einstein relationship (D proportional to eta(-1)) was found to apply only very approximately for oxygen. This is considered in relationship to the behavior of other diverse solutes in RTILs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microelectrode voltammetry is used to study the electrochemical reduction of dioxygen, O-2, in the room-temperature ionic liquid trihexyl(tetradecyl)phosphonium trifluorotris(pentafluoroethyl)phosphate [P6,6,6,14][FAP]. The nature of the unusual voltammetric waves is quantitatively modeled via digital simulation with the aim of clarifying apparent inconsistencies in the literature. The reduction is shown to proceed via a two-electron reaction and involve the likely capture of a proton from the solvent system. The oxidative voltammetric signals seen at fast scan rates are interpreted as resulting from the reoxidation of HO2 center dot. In the presence of large amounts of dissolved carbon dioxide the reductive currents decrease by a factor of ca. two, consistent with the trapping of the superoxide radical, O-2(center dot), intermediate in the two-electron reduction process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this thesis is to study the properties of resistive switching effect based on bistable resistive memory which is fabricated in the form of Al2O3/polymer diodes and to contribute to the elucidation of resistive switching mechanisms. Resistive memories were characterized using a variety of electrical techniques, including current-voltage measurements, small-signal impedance, and electrical noise based techniques. All the measurements were carried out over a large temperature range. Fast voltage ramps were used to elucidate the dynamic response of the memory to rapid varying electric fields. The temperature dependence of the current provided insight into the role of trapped charges in resistive switching. The analysis of fast current fluctuations using electric noise techniques contributed to the elucidation of the kinetics involved in filament formation/rupture, the filament size and correspondent current capabilities. The results reported in this thesis provide insight into a number of issues namely: (i) The fundamental limitations on the speed of operation of a bi-layer resistive memory are the time and voltage dependences of the switch-on mechanism. (ii) The results explain the wide spread in switching times reported in the literature and the apparently anomalous behaviour of the high conductance state namely the disappearance of the negative differential resistance region at high voltage scan rates which is commonly attributed to a “dead time” phenomenon which had remained elusive since it was first reported in the ‘60s. (iii) Assuming that the current is filamentary, Comsol simulations were performed and used to explain the observed dynamic properties of the current-voltage characteristics. Furthermore, the simulations suggest that filaments can interact with each other. (iv) The current-voltage characteristics have been studied as a function of temperature. The findings indicate that creation and annihilation of filaments is controlled by filling and neutralizing traps localized at the oxide/polymer interface. (v) Resistive switching was also studied in small-molecule OLEDs. It was shown that the degradation that leads to a loss of light output during operation is caused by the presence of a resistive switching layer. A diagnostic tool that predicts premature failure of OLEDs was devised and proposed. Resistive switching is a property of oxides. These layers can grow in a number of devices including, organic light emitting diodes (OLEDs), spin-valve transistors and photovoltaic devices fabricated in different types of material. Under strong electric fields the oxides can undergo dielectric breakdown and become resistive switching layers. Resistive switching strongly modifies the charge injection causing a number of deleterious effects and eventually device failure. In this respect the findings in this thesis are relevant to understand reliability issues in devices across a very broad field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrochemical determination of redox active dye species is demonstrated in indigo samples contaminated with high levels of organic and inorganic impurities. The use of a hydrodynamic electrode system based on a vibrating probe (250 Hz, 200 mu m lateral amplitude) allows time-independent diffusion controlled signals to be enhanced and reliable concentration data to be obtained under steady state conditions at relatively fast scan rates up to 4 V s-1In this work the indigo content of a complex plant-derived indigo sample (dye content typically 30%) is determined after indigo is reduced by addition of glucose in aqueous 0.2 M NaOH. The soluble leuco-indigo is measured by its oxidation response at a vibrating electrode. The vibrating electrode, which consisted of a laterally vibrating 500 mu m diameter gold disc, is calibrated with Fe(CN)(6) 3-/4- in 0.1 M KCl and employed for indigo determination at 55, 65, and 75 C in 0.2 M NaOH. Determinations of the indigo content of 25 different samples of plant-derived indigo are compared with those obtained by conventional spectrophotometry. This comparison suggests a significant improvement by the electrochemical method, which appears to be less sensitive to impurities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glossoscolex paulistus hemoglobin (HbGp) was studied by dynamic light scattering (DLS), optical absorption spectroscopy (UV-VIS) and differential scanning calorimetry (DSC). At pH 7.0, cyanomet-HbGp is very stable, no oligomeric dissociation is observed, while denaturation occurs at 56 degrees C, 4 degrees C higher as compared to oxy-HbGp. The oligomeric dissociation of HbGp occurs simultaneously with some protein aggregation. Kinetic studies for oxy-HbGp using UV-VIS and DES allowed to obtain activation energy (E(a)) values of 278-262 kJ/mol (DES) and 333 kJ/mol (UV-VIS). Complimentary DSC studies indicate that the denaturation is irreversible, giving endotherms strongly dependent upon the heating scan rates, suggesting a kinetically controlled process. Dependence on protein concentration suggests that the two components in the endotherms are due to oligomeric dissociation effect upon denaturation. Activation energies are in the range 200-560 kJ/mol. The mid-point transition temperatures were in the range 50-65 degrees C. Cyanomet-HbGp shows higher mid-point temperatures as well as activation energies, consistent with its higher stability. DSC data are reported for the first time for an extracellular hemoglobin. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of the equatorial ligand on the electrochemical oxidation of the compounds [H3CCo(chel)B], where chel is bis (dimethylglyoximato), (DH)2; bis(salicylaldehyde)ethylenediimine, salen; bis(salicylaldehyde) o-phenylenediimine, salophen; bis(salicylaldehyde)cyclohexylenediimine, salcn; bis(acetylacetone) ethylenediimine, bae; and where B is pyridine when chel is (DH2), and dimethylformamide (DMF) when chel represents a Schiff base (salen, salcn, salophen and bae), was studied by means of cyclic voltammetry in DMF, 0.2 M in tetraethylammonium perchlorate, between 25 and -25°C, with a platinum disk working electrode. Absorption spectra in the visible and near ultraviolet regions for these compounds in DMF at 25°C were obtained. The complexes exhibit a reversible one-electron oxidation, at -20°C with scan rates >0.5 V s-; chemical reactions following electron transfer are not detected under these conditions. At slower potential or higher temperatures, the oxidized product decomposes chemically in a solvent-assisted (or nucleophile-assisted) reaction, yielding products which are electroactive in the applied potential range. The behavior of the [H3CCo (DH2)py] derivative is better described as a quasi-reversible charge transfer followed by an irreversible chemical reaction. Experimental evidence suggests that in the case of the [H3CCo(bae)] derivative at -20°C, the reactive -species is pentacoordinated and weakly adsorbed at the electrode surface. The value of E 1 2 and the energies of the first two absorption bands in the visible spectra reveal the ability of the studied complexes to donate and to delocalize electronic charge. © 1982.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The [Mn4 IVO5(terpy)4(H 2O)2]6+ complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electronic transfer between dx2-y2 orbitals of the center metallic and pπ orbital of the ligand, which show great complexity of the system due to orbitals overlap present in octahedral complex of the metal-μ-oxo. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in ITO/glass electrode for better characterization of polymer was also performed. ©The Electrochemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.