852 resultados para Salt-tolerant variant
Resumo:
Salinity is an increasingly important issue in both rural and urban areas throughout much of Australia. The use of recycled/reclaimed water and other sources of poorer quality water to irrigate turf is also increasing. Hybrid Bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davey), together with the parent species C. dactylon, are amongst the most widely used warm-season turf grass groups. Twelve hybrid Bermudagrass genotypes and one accession each of Bermudagrass (C. dactylon), African Bermudagrass (C. transvaalensis) and seashore paspalum (Paspalum vaginatum Sw.) were grown in a glasshouse experiment with six different salinity treatments applied hydroponically through the irrigation water (ECW = <0.1, 6, 12, 18, 24 or 30 dSm-1) in a flood-and-drain system. Each pot was clipped progressively at 2-weekly intervals over the 12-week experimental period to determine dry matter production; leaf firing was rated visually on 3 occasions during the last 6 weeks of salinity treatment. At the end of the experiment, dry weights of roots and crowns below clipping height were also determined. Clipping yields declined sharply after about the first 6 weeks of salinity treatment, but then remained stable at substantially lower levels of dry matter production from weeks 8 to 12. Growth data over this final 4-week experimental period is therefore a more accurate guide to the relative salinity tolerance of the 15 entries than data from the preceding 8 weeks. Based on these data, the 12 hybrid Bermudagrass genotypes showed moderate salinity tolerance, with FloraDwarfM, 'Champion Dwarf', NovotekM and 'TifEagle' ranking as the most salt tolerant and 'Patriot', 'Santa Ana', 'Tifgreen' and TifSport M the least tolerant within the hybrid group. Nevertheless, Santa Ana, for example, maintained relatively strong root growth as salinity increased, and so may show better salt tolerance in practice than predicted from the growth data alone. The 12 hybrid Bermudagrasses and the single African Bermudagrass genotype were all ranked above FloraTeXM Bermudagrass in terms of salt tolerance. However, seashore paspalum, which is widely acknowledged as a halophytic species showing high salt tolerance, ranked well above all 14 Cynodon genotypes in terms of salinity tolerance.
Resumo:
Direct injection of genomic DNA from salt tolerant cv. Pokkali into developing floral tillers on IR20 produced transgenic seeds similar to Pokkali in husk colour and which germinated well in 0.2 M NaCl and had a 4-6-fold higher proline content.
Resumo:
Background: The heterotrimeric M. tuberculosis RecBCD complex, or each of its individual subunits, remains uncharacterized. Results: MtRecD exists as a homodimer in solution, catalyzes ssDNA-dependent ATP hydrolysis, unwinding of DNA replication/recombination intermediates, and interacts with RecA. Conclusion: MtRecD possesses strong 5 3- and weak 3 5-helicase activities. Significance: These findings provide insights into the mechanism underlying DSB repair and homologous recombination in mycobacteria. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5 overhangs relative to the 3 overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having 18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3 overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5 overhangs, it could also catalyze significant unwinding of substrates containing 3 overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5 3 and weak 3 5 unwinding activities. The extent of unwinding of Y-shaped DNA structures was approximate to 3-fold lower compared with duplexes with 5 overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.
Resumo:
本研究是以植物起源于海洋的系统进化理论和植物细胞的全能性理论为依据的。 对芹菜(Apium graveolensL.)、油菜(B. rapa, chinese group)、叶用甜菜(Beta vulgaris(L.)Koch, Cicla group)、甘蓝(B. oleraceae, acephala group)、豆瓣菜(A'asturtiumofficinale R.Br*.)、番杏(Tetragonla expansa Ait.)、菠菜(Spinacia oleracea L.)等蔬菜种类进行大规模种质资源筛选和鉴定, 从芹菜、油菜、叶用甜菜等植物中筛选出20多种能够耐受l%NaCI或1/3海水盐度的蔬菜品系。在耐盐蔬菜品种资源筛选的基础上,为了证明用生物技术提高盐敏感蔬菜耐盐性的可行性,本研究以植物体外培养细胞体系为操作平台,对盐敏感的蔬菜一一豆瓣菜进行了生物技术改造。一方面,筛选豆瓣菜的耐盐细胞变异体并使得耐盐细胞再生植株,获得了耐1/3海水的豆瓣菜变异体;另一方面,通过将盐生植物山菠菜(Atriplex hortensisL)的耐盐相关基因,甜菜碱醛脱氢酶(BADH)基因转入豆瓣菜,使得BADH基因在豆瓣菜中过量表达和积累甜菜碱,提高了豆瓣菜的渗透调节能力,从而提高了豆瓣菜的耐盐性。同时,本研究还将所获得的多种抗盐、耐海水蔬菜材料以海水无土栽培的方式进行生产和应用, 取得了很好的效果。 本文的结果证明了在陆地淡水栽培的蔬菜和野生蔬菜资源中,存在着部分耐盐性较强的蔬菜种质;通过生物技术改造能够提高盐敏感蔬菜的耐盐性,并获得抗盐、耐海水的蔬菜新品系。对这些抗盐、耐海水蔬菜材料进行1/3海水无土栽培应用的成功结果表明,某些陆地蔬菜具有重新适应海洋生境的潜能。
Resumo:
本研究利用酵母功能互补方法和RACE的方法从具有较强抗逆能力的绊根草中克隆了9个与重金属抗性相关的克隆,并对部分基因的表达调控及功能进行了初步研究。同时还利用细胞工程技术筛选到了具有较强的耐受火箭推进齐-偏二甲肼(UDMH)的芦苇的变异株系,为以后用人工湿地系统处理受偏二甲肼污染的废水奠定了基础。 本研究通过酵母功能互补法克隆到了五个基因,分别为CdSRP、CdTETH、 CdASP、CdMT2和CdTER1。CdSRP可能是一种衰老相关基因;CdTETH编码的产物可能是组成TRAPP复合体的一个亚基;CdASP是一个功能未知的基因;CdMT2是一个编码Type Ⅱ型金属硫蛋白基因;CdTER1可能是编码一个TERl-like家族蛋白成员的基因。用这五个基因分别转化因Acr基因缺失而对As敏感的酵母菌株FD236-6A,所获得的转化子对As的抗性均有提高,其中以CdMT2、CdTER1和CdASP的作用最为明显。这些基因的表达调控方式以及与其它重金属抗性的关系正在研究中。 本研究还利用RACE的方法克隆了一个谷胱甘肽S-转移酶基因,CdGSTFl;两个植物络合素合酶基因,CdPCSI和CdPCSⅡ,和一个TypeⅠ型金属硫蛋白基因CdMT1。CdGSTF1属于phi类GST基因,Northern-blotting分析表明,CdGSTF1在绊根草根部的表达受Cd2+的诱导,暗示其可能具有解除氧自由基或氢过氧化物的毒性的作用。CdPCSI和CdPCSⅡ的同源性较高,表明绊根草含有两个以上的PCs合酶的基因。参照前人的方法对CdPCSI和CdPCSII的氨基酸序列进行分析,发现它们含有六个非常相近的Cd2+结合位点,这两个基因的功能及其调控方式有何差异尚需进一步的研究。cdMT1与用酵母功能互补法克隆到的CdMT2属于不同类型的MT基因,对它们之间很可能存在的功能、组织特异性等方面的差异性进行了讨论。 四氧化二氮/偏二甲肼是常用的航天器双组元液体推进剂。偏二甲肼易挥发,有致癌、致畸、致突变的毒性。在推进剂贮存、运输、转注、火箭发动机试车、火箭发射、管道及设备冲洗中产生的含有偏二甲肼的废水能够对卫星发射基地的地下水源和空气造成污染。因此迫切需要培育能够净化偏二甲肼污水的植物。 本研究利用生长在卫星发射基地的野生芦苇的种子诱导愈伤组织,进而通过逐步提高偏二甲肼筛选压力的方式从中筛选出具有较强抗性的愈伤组织,然后诱导其分化。目前已经得到能够在含有1.63 mmol/L和3.26 mmol/L偏二甲肼的分化培养基中生长良好的芦苇再生苗,并已成功转移至温室中。抗性分化苗对污水的处理效果和耐受偏二甲肼的机理正在研究中。
Resumo:
药蒲公英(Taraxacum officinale Weber)是菊科蒲公英属的模式种,主要分布于欧洲和北美,在我国新疆也有少量分布。与Taraxacum mongolicum Hand-Mazz(我国中药市场的主流种和主要自然分布种)相比,药蒲公英的生物量更大,作为营养保健蔬菜具有更大的市场价值。药蒲公英的组织培养工作是开展基础研究的有力工具,本工作中,药蒲公英叶片外植体在含0.2mg/L IAA和1.0mg/L TDZ的MS培养基中培养2周后便产生大量的丛生芽,在含有0.5mg/L 2,4-D和2mg/L6-BA的MS培养基中培养30天后,形成明显的愈伤组织,愈伤组织块在含1.0mg/L 6-BA的MS培养基中成功再生。 体细胞无性系变异是植物愈伤组织培养中的普遍现象,我们将继代6次的愈伤组织接种于含盐培养基,得到了能够耐受1.0%NaCl的细胞系。耐盐细胞系在含盐培养基中的相对生长率和细胞活力明显高于对照(非耐盐细胞系接种于含盐培养基),由耐盐细胞系在含盐培养基中获得再生植株的工作正在进行。 直接不定芽再生途径对遗传物质具有高度保真性,是遗传转化的理想体系。我们利用此再生系统,将来源于耐盐植物山菠菜(Atriplex hortensis L.)BADH基因通过农杆菌介导的叶盘转化法导入药蒲公英,获得了PCR检测成阳性的转基因植株5株,从而建立了药蒲公英的转化体系。转基因植株的其他分子检测和耐盐性鉴定工作正在进行。
Resumo:
Studies were undertaken to evaluate the quality changes in freshwater giant prawn, Macrobrachium rosenbergii during various storage conditions of handling and preservation and producing safe and quality products. The samples kept in ice immediately after catch with head-on and head-less condition were found to be acceptable for 6 days and 7 days, respectively. Delaying of icing considerably shortened the shelf-life. The pH value increased from 6.36 to 8.0 after 10 days in ice. The initial average TVB-N value of sample increased from below 10 mg/100 g to 25 mg/100 g with the lapse of storage period. The Ca++ ATPase activity in presence of 0.1M KCl slightly decreased at the end of 10 days of ice storage. Immediately after harvest, initial aerobic plate count (APC) was 2.88x10^6 CFU/g which gradually increased to 1.12x10^8 CFU/g after 6 days in ice storage and showed early signs of spoilage. Initial bacterial genera in the prawn iced at 0 hours were comprised of Coryneform (22.21 %), Bacillus (7.40%), Micrococcus (11.11 %), Achromobacter (48.14%), Flavobacterium/Cytophaga (7.40%), Pseudomonas (3.70%) and Aeromonas (3.70%). During ice storage Coryneforms and Bacillus were always dominating along with less prominent ones - Micrococcus, Achromobacter and Flavobacterium. Studies were conducted on the stability of myofibrillar protein of M. rosenbergii under different storage and pH conditions. The influence of a wide range of pH on the remaining Ca++ ATPase activity of M. rosenbergii muscle myofibrils after storage at -20°C for 2 days, at 0°C for 2 days and at 35°C for 30 minutes demonstrated that ATPase activities were lower in acidic and alkaline pH regions and the activity remained relatively high. Mg++ ATPase activities both in presence and absence of Ca++ remained high at neutral pH compared to those of acidic and alkaline region. The solubility of myofibrillar protein decreased gradually both in acidic and alkaline pH regions. The study also examined the bacteriological quality of freshly harvested M. rosenbergii, pond sediment and pond water from four commercial freshwater prawn farms at Fulpur and Tarakanda upazilas in the district of Mymensingh. The study included aerobic plate count (APC), total coliform count, detection, isolation and identification of suspected public health hazard bacteria and their seasonal variation, salt tolerance test, antibiotic sensitivity test of the isolates and washing effect of chlorinated water on the bacterial load in the prawn samples. APC in sediment soil and water of the farm and gill and hepatopancreas of freshly harvested prawns varied considerably among the farms and between summer and winter season. The range of coliform count in water, gill and hepatopancreas ranged between 6 - 2.8x10^2 CFU/ml, 1.2x10^2 - 3.32x10^2 CFU/g and 1.43x10^2 - 3.89 x10^3 CFU/g, respectively. No coliform was detected in pond sediment sample. Suspected health hazard bacteria isolated and identified from pond sediment, water, gill and hepatopancreas included Streptococcus, Bacillus, Escherichia coli, Klebsialla, Salmonella, Staphylococcus, Pseudomonas and Aeromonas. Bacillus, Salmonella and Staphyloccus [sic], and were found to be highly salt tolerant and capable of growing at 10% NaCl. The antibiotic discs with different concentration of antibiotics were used for the sensitivity test. The organisms were found to be most sensitive against Tetracyclin and Gentamycin.
Resumo:
A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Infectious diseases often hamper the production of aquatic organisms in aquaculture systems, causing economical losses, environmental problems and consumer safety issues. The conventional way aquaculture producers had to control pathogens was by means of synthetic antibiotics and chemicals. This procedure had consequences in the emergence of more resilient pathogens, drug contamination of seafood products and local ecosystems. To avoid the repercussions of antibiotic use, vaccination has greatly replaced human drugs in western fish farms. However there is still massive unregulated antibiotic use in third world fish farms, so less expensive therapeutic alternatives for drugs are desperately needed. An alternative way to achieve disease control in aquaculture is by using natural bioactive organic compounds with antibiotic, antioxidant and/or immunostimulant properties. Such diverse biomolecules occur in bacteria, algae, fungi, higher plants and other organisms. Fatty acids, nucleotides, monosaccharides, polysaccharides, peptides, polyphenols and terpenoids, are examples of these substances. One promising source of bioactive compounds are salt tolerant plants. Halophytes have more molecular resources and defence mechanisms, when compared with other tracheophytes, to deal with the oxidative stresses of their habitat. Many halophytes have been used as a traditional food and medical supply, especially by African and Asian cultures. This scientific work evaluated the antibiotic, antioxidant, immunostimulant and metal chelating properties of Atriplex halimus L., Arthrocnemum macrostachyum Moric., Carpobrotus edulis L., Juncus acutus L. and Plantago coronopus L., from the Algarve coast. The antibiotic properties were tested against Listonella anguillarum, Photobacterium damselae piscicida and Vibrio fischeri. The immunostimulant properties were tested with cytochrome c and Griess assays on Sparus aurata head-kidney phagocytes. J. acutus ether extract inhibited the growth of P. damselae piscicida. A. macrostachyum, A. halimus, C. edulis, Juncus acutus and P. coronopus displayed antioxidant, copper chelating and iron chelating properties. These plants show potential as sources of bioactive compounds with application in aquaculture and in other fields.
Resumo:
Considering the potential of marine environment present study was designed for the screening and isolation of a potential salt tolerant. alkaline and thennotolerant lipase producing bacteria from the costal belts of South India and consequent development of ideal bioprocess for industrial production, purification characterisation and evaluation of the potential of the lipase enzyme for various industrial applications 1. Screening and isolation of a potential lipase producing bacteria. 2. Optimization of various physicochemical factors in Submerged fennentation for the production of alkaline lipase 3. Purification ofthe lipase enzyme 4. Characterisation of the enzyme 5. Evaluation of the enzyme for various industrial applications
Resumo:
Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus
Resumo:
We assessed the importance of temperature, salinity, and predation for the size structure of zooplankton and provided insight into the future ecological structure and function of shallow lakes in a warmer climate. Artificial plants were introduced in eight comparable coastal shallow brackish lakes located at two contrasting temperatures: cold-temperate and Mediterranean climate region. Zooplankton, fish, and macroinvertebrates were sampled within the plants and at open-water habitats. The fish communities of these brackish lakes were characterized by small-sized individuals, highly associated with submerged plants. Overall, higher densities of small planktivorous fish were recorded in the Mediterranean compared to the cold-temperate region, likely reflecting temperature-related differences as have been observed in freshwater lakes. Our results suggest that fish predation is the major control of zooplankton size structure in brackish lakes, since fish density was related to a decrease in mean body size and density of zooplankton and this was reflected in a unimodal shaped biomass-size spectrum with dominance of small sizes and low size diversity. Salinity might play a more indirect role by shaping zooplankton communities toward more salt-tolerant species. In a global-warming perspective, these results suggest that changes in the trophic structure of shallow lakes in temperate regions might be expected as a result of the warmer temperatures and the potentially associated increases in salinity. The decrease in the density of largebodied zooplankton might reduce the grazing on phytoplankton and thus the chances of maintaining the clear water state in these ecosystems
Resumo:
Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).