962 resultados para Salt water intrusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On verso of t.p.: Printed by Spottiswoode and Co., New-Street Square, London.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Added t.-p., illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley,north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5-0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from modern sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of watertable behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tidal influence on groundwater hydrodynamics, salt-water intrusion and submarine groundwater discharge from coastal/estuarine aquifers is poorly quantified for systems with a mildly sloping beach, in contrast to the case where a vertical beach face is assumed. We investigated the effect of beach slope for a coastal aquifer adjacent to a low-relief estuary, where industrial waste was emplaced over the aquifer. The waste was suspected to discharge leachate towards the estuary. Field observations at various locations showed that tidally induced groundwater head fluctuations were skewed temporally. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially and the phase-tags increased Linearly for the primary tidal signals as they propagated inland. Salinisation zones were observed in the bottom part of the estuary and near the beach surface. Flow and transport processes in a cross-section perpendicular to the estuary were simulated using SEAWAT-2000, which is capable of depicting density-dependent flow and multi-species transport. The simulations showed that the modelled water table fluctuations were in good agreement with the monitored data. Further simulations were conducted to gain insight into the effects of beach slope. In particular the limiting case of a vertical beach face was considered. The simulations showed that density difference and tidal forcing drive a more complex hydrodynamic pattern for the mildly sloping beach than the vertical beach, as well as a profound asymmetry in tidally induced water table fluctuations and enhanced salt-water intrusion. The simulation results also indicated that contaminant transport from the aquifer to the estuary was affected by the tide, where for the mildly sloping beach, the tide tended to intensify the vertical mass exchange in the vicinity of the shorelines, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A site investigation program was carried out to detect salt-water intrusions in a shallow sedimentary aquifer based on electrical resistivity measurements. The site is located close to Paranaguá harbor, in the Paraná State, Brasil. At this site, high chloride concentration contaminated shallow water wells used to supply water for local industries. The site investigation program included a fieldwork, dipole-dipole electrical profiling, resistivity piezocone tests, physical-chemical analysis of sampled water and interpretation of borehole logs. The resistivity piezocone tests provided two simultaneous information; the soil stratigraphy at a very detailed level and a quasi-continuous resistivity profile. Both information adequately complemented dipole-dipole electrical profiling test data. The integration of all test data allowed identifying the contaminated areas as well as guided the location of new water wells to be installed in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two case histories from Brazil where geophysical and resistivity piezocone tests were carried out to detect contamination. At the first one, the site investigation program was carried out to detect salt-water intrusions in a superficial sedimentary aquifer, at the Paranaguá harbor, in Paraná State. The second case history is a sanitary landfill from Bauru City, São Paulo State. In both sites, superficial geophysical tests were interpreted to detect and delineate the shape of contamination plume, helping to locate the resistivity piezocone tests. It was found that the interpretation of resistivity piezocone tests is straightforward to assess salt-water intrusion in sedimentary sands. For tropical soils, this technique presented some limitations since the groundwater table sometimes is deeper than the layer penetratable to the cone. Moreover, the genesis of those soils affects soil behavior and soil and water sampling is required to support interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Groundwater chemistry in La Aldea aquifer (Gran Canaria, Canary Islands) shows high contents of chloride and nitrate ions. The salinization process has been modelled using the geochemical data, taking into account the results of a previous flow model. The results allow to identify the salinity of the recharge from the rainfall under aridity conditions and the irrigation returns like the main causes of the groundwater salinization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nell’ambito del progetto multidisciplinare “Coastal Salt Water Intrusion”, che si propone di indagare “l’Intrusione salina nella costa ravennate con i conseguenti impatti territoriali-ambientali, connessi al previsto innalzamento del livello marino per cause climatiche e di subsidenza”, si inserisce il presente studio con l’obiettivo di fornire una caratterizzazione idrogeochimica delle acque di falda e superficiali e un modello geochimico generale sui processi di salinizzazione o desalinizzazione in atto nella falda freatica costiera della costa ravennate. E’ stato fatto un confronto fra tre metodiche di estrazione del complesso di scambio della matrice solida dell’acquifero che utilizzano rispettivamente acetato di ammonio, cloruro di bario e argento-tiourea. Sono stati posizionati 5 transetti perpendicolari alla linea di costa per un totale di 44 punti di campionamento con due campagne di prelievi, al termine della primavera e al termine dell’estate. La caratterizzazione dei processi di mixing e scambio ionico con la matrice solida dell’acquifero è avvenuta mediante analisi dei cationi ed anioni fondamentali, determinazione della CEC sulla matrice solida dell’acquifero, modellizzazione mixing/scambio ionico, modellizzazione della composizione teorica della frazione scambiabile in funzione della composizione acqua all’equilibrio e interpolazione geostatistica dei dati raccolti e costruzione di mappe geochimiche (curve di iso-concentrazione). La metodologia di estrazione che utilizza il bario-cloruro è risultata la più affidabile. Le acque prelevate dalla falda superficiale evidenziano miscelazione in varie proporzioni acqua marina/acqua dolce, scambi ionici per interazione acqua/sedimento, dissoluzione di CaSO4.2H2O. I processi di salinizzazione e/o addolcimento mostrano una significativa variabilità nello spazio (variabilità legata alla distanza dalla costa, al profilo topografico e alla distribuzione dei corpi sabbiosi litoranei) e nel tempo (variabilità legata alla piovosità e alla gestione delle acque superficiali e del sottosuolo). La complessa variabilità spazio-temporale dei processi in atto nella falda superficiale non consente di evidenziare una complessiva prevalenza di fenomeni di salinizzazione rispetto a quelli di addolcimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The landscape structure of emergent wetlands in undeveloped portions of the southeastern coastal Everglades is comprised of two distinct components: scattered forest fragments, or tree islands, surrounded by a low matrix of marsh or shrub-dominated vegetation. Changes in the matrix, including the inland transgression of salt-tolerant mangroves and the recession of sawgrass marshes, have been attributed to the combination of sea level rise and reductions in fresh water supply. In this study we examined concurrent changes in the composition of the region’s tree islands over a period of almost three decades. No trend in species composition toward more salt-tolerant trees was observed anywhere, but species characteristic of freshwater swamps increased in forests in which fresh water supply was augmented. Tree islands in the coastal Everglades appear to be buffered from some of the short term effects of salt water intrusion, due to their ability to build soils above the surface of the surrounding wetlands, thus maintaining mesophytic conditions. However, the apparent resistance of tree islands to changes associated with sea level rise is likely to be a temporary stage, as continued salt water intrusion will eventually overwhelm the forests’ capacity to maintain fresh water in the rooting zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal environments can be highly susceptible to environmental changes caused by anthropogenic pressures and natural events. Both anthropogenic and natural perturbations may directly affect the amount and the quality of water flowing through the ecosystem, both in the surface and subsurface and can subsequently, alter ecological communities and functions. The Florida Everglades and the Sian Ka'an Biosphere Reserve (Mexico) are two large ecosystems with an extensive coastal mangrove ecotone that represent a historically altered and pristine environment, respectively. Rising sea levels, climate change, increased water demand, and salt water intrusion are growing concerns in these regions and underlies the need for a better understanding of the present conditions. The goal of my research was to better understand various ecohydrological, environmental, and hydrogeochemical interactions and relationships in carbonate mangrove wetlands. A combination of aqueous geochemical analyses and visible and near-infrared reflectance data were employed to explore relationships between surface and subsurface water chemistry and spectral biophysical stress in mangroves. Optical satellite imagery and field collected meteorological data were used to estimate surface energy and evapotranspiration and measure variability associated with hurricanes and restoration efforts. Furthermore, major ionic and nutrient concentrations, and stable isotopes of hydrogen and oxygen were used to distinguish water sources and infer coastal groundwater discharge by applying the data to a combined principal component analysis-end member mixing model. Spectral reflectance measured at the field and satellite scales were successfully used to estimate surface and subsurface water chemistry and model chloride concentrations along the southern Everglades. Satellite imagery indicated that mangrove sites that have less tidal flushing and hydrogeomorphic heterogeneity tend to have more variable evapotranspiration and soil heat flux in response to storms and restoration. Lastly, water chemistry and multivariate analyses indicated two distinct fresh groundwater sources that discharge to the phosphorus-limited estuaries and bays of the Sian Ka'an Biopshere Reserve; and that coastal groundwater discharge was an important source for phosphorus. The results of the study give us a better understanding of the ecohydrological and hydrogeological processes in carbonate mangrove environments that can be then be extrapolated to similar coastal ecosystems in the Caribbean.