893 resultados para Salt marsh
Resumo:
Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence. Salt marshes can act as natural buffer zones, providing protection from waves during storms. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels and waves are highest is poorly understood. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-m-long wave flume that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are high. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained remarkably stable and resistant to surface erosion under all conditions.The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggest that salt marsh ecosystems can be a valuable component of coastal protection schemes.
Resumo:
"February 1982."
Resumo:
"January 1983."
Resumo:
"June 1975."
Resumo:
"August 1974."
Resumo:
Author's presentation copy with manuscript note on page 331.
Resumo:
In this study we analyze the feeding ecology and trophic relationships of some of the main fish species (Soleidae, Moronidae, Mullidae, Sparidae, Mugilidae, and Batrachoididae) of the lower Estuary of the Guadiana River and the Castro Marim e Vila Real de Santo Antonio Salt Marsh. We examined the stomachs of 1415 fish caught monthly between September 2000 and August 2001. Feeding indices and coefficients were determined and used along with the results of multivariate analysis to develop diagrams of trophic interactions (food webs). Results show that these species are largely opportunistic predators. The most important prey items are amphipods, gobies (Gobiidae), shrimps (Palaemon serratus and Crangon crangon), and polychaete worms. The lower Estuary and associated salt marshes are important nurseries and feeding grounds for the species studied. In this area, it is therefore important to monitor the effects of changes in river runoff, nutrient input, and temperature that result from construction of the Alqueva Dam upstream. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We studied the ichthyofauna of the Castro Marim salt marsh based on monthly sampling surveys at five sites between September 2000 and August 2001. Sampling took place at night during rising neap tides using a 40-m long beach seine. We sampled a total of 7955 fish specimens (37 995.7 g), comprising 34 species and 17 families. The occurrence of most species was occasional, with Pomatoschistus microps (51.9%) and Atherina spp. (10.3%) being the most abundant species, accounting for 62.2% of the total fish captured. Biomass was dominated by the marine species Liza ramado (15.9%), Mullus surmuletus (13.5%), and Liza aurata (13.4%). Temperature and salinity showed a seasonal pattern, with minimums during the winter months and maximums during the summer months. In contrast, river flow peaked in winter and was lowest during summer. This pattern in river flow appears to be correlated with variations in the fish assemblages, which present two distinct compositions during the two periods. A few species characterise the winter fish assemblage, with dominance by residents and the presence of freshwater species, while the summer assemblage is characterised by the presence of many marine visitors that use the salt marsh in their first months/years of life. Temporal variations in total abundance and biomass reflect fluctuations in the dominant species. Resident species presented the highest abundance values, while marine adventitious species and marine species that use the salt marsh as a nursery ground contributed most to community species richness. Castro Marim salt marsh constitutes an important ecosystem for fishes, providing habitat for many species, especially juveniles, which find conditions within the salt marsh suitable for their development. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We compared the density and biomass of resident fish in vegetated and unvegetated flooded habitats of impounded salt marshes in the northern Indian River Lagoon (IRL) Estuary of east-central Florida. A 1-m2 throw trap was used to sample fish in randomly located, paired sample plots (n = 198 pairs) over 5 seasons in 7 impoundments. We collected a total of 15 fish taxa, and 88% of the fishes we identified from the samples belonged to three species: Cyprinodon variegatus (Sheepshead Minnow), Gambusia holbrooki (Eastern Mosquitofish), and Poecilia latipinna (Sailfin Molly). Vegetated habitat usually had higher density and biomass of fish. Mean fish density (and 95% confidence interval) for vegetated and unvegetated sites were 8.2 (6.7–9.9) and 2.0 (1.6–2.4) individuals m-2, respectively; mean biomass (and 95% confidence interval) for vegetated and unvegetated sites were 3.0 (2.5–3.7) and 1.1 (0.9–1.4) g m-2, respectively. We confirmed previous findings that impounded salt marshes of the northern IRL Estuary produce a high standing stock of resident fishes. Seasonal patterns of abundance were consistent with fish moving between vegetated and unvegetated habitat as water levels changed in the estuary. Differences in density, mean size, and species composition of resident fishes between vegetated and unvegetated habitats have important implications for movement of biomass and nutrients out of salt marsh by piscivores (e.g., wading birds and fishes) via a trophic relay.
Resumo:
We measured growth and movements of individually marked free-ranging juvenile white shrimp (Litopenaeus setiferus) in tidal creek subsystems of the Duplin River, Sapelo Island, Georgia. Over a period of two years, 15,974 juvenile shrimp (40−80 mm TL) were marked internally with uniquely coded microwire tags and released in the shallow upper reaches of four salt marsh tidal creeks. Subsequent samples were taken every 3−6 days from channel segments arranged at 200-m intervals along transects extending from the upper to lower reach of each tidal creek. These collections included 201,384 juvenile shrimp, of which 184 were marked recaptures. Recaptured shrimp were at large an average of 3−4 weeks (range: 2−99 days) and were recovered a mean distance of <0.4 km from where they were initially marked. Mean residence times in the creek subsystems ranged from 15.2 to 25.5 days and were estimated from exponential decay functions describing the proportions of marked individuals recaptured with increasing days at large. Residence time was not significantly correlated with creek length (Pearson=−0.316, P=0.684 ), but there was suggestive evidence of positive associations with either intertidal (Pearson r=0.867, P=0.133) or subtidal (Pearson r=0.946, P=0.054) drainage area. Daily mean specific growth rates averaged 0.009 to 0.013 among creeks; mean absolute growth rates ranged from 0.56−0.84 mm/d, and were lower than those previously reported for juvenile penaeids in estuaries of the southeastern United States. Mean individual growth rates were not significantly different between years (t-test, P>0.30) but varied significantly during the season, tending to be greater in July than November. Growth rates were size-dependent, and temporal changes in size distributions rather than temporal variation in physical environmental factors may have accounted for seasonal differences in growth. Growth rates differed between creeks in 1999 (t-test, P<0.015), but not in 1998 (t-test, P>0.5). We suggest that spatial variation in landscape structure associated with access to intertidal resources may have accounted for this apparent interannual difference in growth response.
Resumo:
This report reviews some of the natural ecological processes at work within a salt marsh as they relate to a spill of natural gas condensate - a mixture of aliphatic hydrocarbons, n-hexane, benzene, toluene, and xylene. It also reviews the environmental impacts of some of the components of natural gas condensate as well as related compounds (crude oil, higher molecular weight hydrocarbons, polycyclic aromatic hydrocarons - PAHs, linear alkyl-benzenes - LABs, etc.) on salt marsh ecosystems in southern Louisiana and elsewhere in the world. The behavior and persistence of these compounds once they have entered the environment is also considered.
Resumo:
Soil samples from a Louisiana Barataria Basin brackish marshes were fractionated into acid-volatile sulfides (AVS), HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, and carbon-bonded sulfur. Inorganic sulfur composed 13% of total sulfur in brackish marsh soil with HCl-soluble sulfur representing 63–92% of the inorganic sulfur fraction. AVS represented less than 1% of the total sulfur pool. Pyrite sulfur and elemental sulfur together accounted for 8–33% of the inorganic sulfur pool. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, was the most dominant pool representing the majority of total sulfur in brackish marsh. Results were compared to values reported for fresh and salt marshes. Reported inorganic sulfur fractions were greater in adjacent marshes, constituting 24% of total sulfur in salt marsh, and 22% in freshwater marshes. Along a salinity gradient, HCl-soluble sulfur represented 78–86% of the inorganic sulfur fraction in fresh, brackish, and salt marsh. Organic sulfur in the forms of ester-sulfate sulfur and carbon-bonded sulfur was the major constituent (76–87%) of total sulfur in all marshes. Reduced sulfur species, except elemental sulfur, increased seaward along the salinity gradient. Accumulation of reduced sulfur forms through sedimentation processes was significant in marsh energy flow in fresh, brackish and salt marshes.
Resumo:
Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.
Resumo:
Tese de doutoramento, Biologia (Ecologia), Universidade de Lisboa, Faculdade de Ciências, 2015