179 resultados para Saale-Kaltzeit
Resumo:
Heinrich Graetz
Resumo:
Adolf Schwarz
Resumo:
Signatur des Originals: S 36/F12194
Resumo:
Signatur des Originals: S 36/G00380
Resumo:
Each volume has also special t.p.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (doctoral)--Universitat Jena.
Resumo:
Mode of access: Internet.
Resumo:
This article is a first summary of the heavy-mineral content of moraine and meltwater deposits of the Saalian glaciation in the Münsterland and its northeastern extension (NW Germany). In the beginning the appearance and distribution of both types of sediments are described (E. Speetzen), then the heavy mineral composition of selected outcrops is reported and the results are compared (D. Henningsen). Generally the predominant heavy minerals are garnet, minerals of the epidote group, zircon, and ordinary hornblende. The heavy mineral contents of moraine sediments sometimes are similar to that of meltwater deposits, in other cases they are different. Obviously there exists no relation between the heavy mineral composition and various advances of the Scandinavian ice sheet and their sediments, the content of heavy minerals rather depends on local influences.
Resumo:
Im nordwestlichen Harzvorland wurden Elster- und Saalezeitliche Fluß- und Schmelzwasser-Ablagerungen untersucht. Den Vorzug hierbei erhielt die - möglichst flächendeckende - Bearbeitung spät-Elster- bis früh-Saale-zeitlicher Flußablagerungen (Mittelterrasse). Dabei lag der methodische Schwerpunkt auf der Aufschluß-Bearbeitung und der Erfassung des Geröll- und Schwermineralbestandes.
Resumo:
Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.