442 resultados para SVM
Resumo:
El presente proyecto se centra en proteger a los peatones de las vías urbanas o de una fábrica donde conviven con robots móviles, pues son los mayores afectados en los acci- dentes producidos en estos entornos. El objetivo es diseñar un algoritmo basado en visión monocular capaz de detectar a los usuarios de forma rápida y precisa de tal forma que se tenga constancia en todo momento de los peatones que se encuentran delante del vehículo.
Resumo:
杜鹃属(Rhododendron L.)是中国种子植物中最大的属,其现代分布和分化中心是我国西南部的横断山区和东喜马拉雅地区。我国西部、西南部的云南、四川、西藏等地共有杜鹃达450种,仅特有种就有约300种。对杜鹃属分布的深入研究是横断山区生物多样性保护不可缺少的重要部分。 由于物种分布与环境因子之间存在着紧密的联系,利用环境因子作为预测物种分布模型的变量是当前最普遍的建模思路。但是绝大多数物种分布预测模型都遇到了难以解决的“高维小样本”问题――模型在标本数据不足时无法给出合理的预测,或者模型无法处理大量的环境变量。机器学习领域的理论和实践已经证明,基于结构风险最小化原理的支持向量机(Support Vector Machine, SVM)算法非常适合“高维小样本”的分类问题。为了探索其应用在物种分布预测问题上的可能性,本文创新性的实现了基于SVM算法的物种分布预测系统。然后,本文以30个杜鹃属(Rhododendron L.)物种为检验对象,利用其标本数据和11个1km的栅格环境变量图层作为模型变量,预测其在中国的潜在分布区。本文通过全面的模型评估——专家评估,ROC (Receiver Operator Characteristic)曲线和曲线下方面积AUC (Area Under the Curve)——来比较模型的性能。试验结果表明,我们所实现的以SVM为核心的物种分布预测系统无论在计算速度还是预测效果上都远远优于当前广泛使用的GARP (Genetic Algorithm for Rule-Set Prediction)预测系统。 之后,本文进一步探讨了SVM预测系统预测效果与环境变量维数和标本点个数的关系。试验结果表明,对于只有少量标本点的物种SVM的预测结果仍然具有相当的合理性。由此可见, SVM预测系统很好的解决了以前众多模型无法克服的稀有种和标本点稀少的物种的潜在分布区模拟问题。同时本文发现大的环境维数(高维)对于物种潜在分布区的预测有着决定性的作用,因此模型处理高维问题的能力显得至关重要。 最后,我们使用中国所有可获取的杜鹃属标本数据,以及83个1km的栅格环境变量图层,对400种杜鹃属物种的潜在分布区进行预测。根据预测出来的物种潜在分布区,我们得到了中国杜鹃属物种潜在多样性分布格局,特有物种潜在多样性分布格局,濒危杜物种潜在的分布格局,各亚属物种潜在分布格局,以及不同生活型物种潜在多样性分布格局。这些分布区图不仅可以对杜鹃属起源研究提供分析验证的条件,还能为其引种、保护和新种的搜寻提供有利的空间依据。
Resumo:
This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.
Resumo:
First, the compression-awaited data are regarded Lis character strings which are produced by virtual information source mapping M. then the model of the virtual information source M is established by neural network and SVM. Last we construct a lossless data compression (coding) scheme based oil neural network and SVM with the model, an integer function and a SVM discriminant. The scheme differs from the old entropy coding (compressions) inwardly, and it can compress some data compressed by the old entropy coding.
Resumo:
National Natural Science Foundation of China 60753001
Resumo:
草图符号的自适应学习中,不同用户的训练样本数量可能不同。保持在不同样本数量下良好的学习效果成为需要解决的一个重要问题.提出一种自适应的草图符号识别方法,该方法采用与训练样本个数相关的分类器组合策略将模板匹配方法和SVM统计分类方法进行了高效组合.它通过利用支持小样本学习的模板匹配方法和支持大量样本学习的SVM方法,并同时利用草图符号中的在线信息和离线信息,实现了不同样本个数下自适应的符号学习和识别.基于该方法,文中设计并实现了支持自适应识别的草图符号组件.最后,利用扩展的PIBGToolkit开发出原型系统IdeaNote.评估表明,该方法可以在24类草图符号分别使用1到20个训练样本时具有较高的识别正确率和较好的时间性能.
Resumo:
N-gram analysis is an approach that investigates the structure of a program using bytes, characters, or text strings. A key issue with N-gram analysis is feature selection amidst the explosion of features that occurs when N is increased. The experiments within this paper represent programs as operational code (opcode) density histograms gained through dynamic analysis. A support vector machine is used to create a reference model, which is used to evaluate two methods of feature reduction, which are 'area of intersect' and 'subspace analysis using eigenvectors.' The findings show that the relationships between features are complex and simple statistics filtering approaches do not provide a viable approach. However, eigenvector subspace analysis produces a suitable filter.
Resumo:
Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.
Resumo:
In this paper, we propose a new learning approach to Web data annotation, where a support vector machine-based multiclass classifier is trained to assign labels to data items. For data record extraction, a data section re-segmentation algorithm based on visual and content features is introduced to improve the performance of Web data record extraction. We have implemented the proposed approach and tested it with a large set of Web query result pages in different domains. Our experimental results show that our proposed approach is highly effective and efficient.