504 resultados para SURGERIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction / objectives The number of orthopedic surgery, especially surgery of total hip and knee, have been more frequent due to technological advances. This study aims to determine the microbial load in the instruments used in clean surgeries, quantifying and identifying the genus and species of microbial growth.Methods Orthopedic surgical instruments were immersed, after use, in sterile water, sonicated in ultrasonic washer and consecutively shaken. Then, the lavage was filtered through a 0.45micron membrane, the result was incubated in aerobic medium, anaerobic medium and medium for fungi and yeasts. Results In clean surgeries, results showed that 47% of used instruments had microbiological growth in the range of 1 to 100 CFU/instrument. The most prevalent organism was Staphylococcus coagulase negative (28%), followed by Bacillus subtilis (11%).This study refuted the hypothesis that clean surgeries happen in micro-organismsfree surgery field. Conclusion The microbiological findings reinforce the importance of antibiotic prophylaxis, practice already well established for this category of surgical procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In this paper we present a landmark-based augmented reality (AR) endoscope system for endoscopic paranasal and transnasal surgeries along with fast and automatic calibration and registration procedures for the endoscope. METHODS: Preoperatively the surgeon selects natural landmarks or can define new landmarks in CT volume. These landmarks are overlaid, after proper registration of preoperative CT to the patient, on the endoscopic video stream. The specified name of the landmark, along with selected colour and its distance from the endoscope tip, is also augmented. The endoscope optics are calibrated and registered by fast and automatic methods. Accuracy of the system is evaluated in a metallic grid and cadaver set-up. RESULTS: Root mean square (RMS) error of the system is 0.8 mm in a controlled laboratory set-up (metallic grid) and was 2.25 mm during cadaver studies. CONCLUSIONS: A novel landmark-based AR endoscope system is implemented and its accuracy is evaluated. Augmented landmarks will help the surgeon to orientate and navigate the surgical field. Studies prove the capability of the system for the proposed application. Further clinical studies are planned in near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Learning surgical skills in the operating room may be a challenge for medical students. Therefore, more approaches using simulation to enable students to develop their practical skills are required. OBJECTIVES: We hypothesized that (1) there would be a need for additional surgical training for medical students in the pre-final year, and (2) our basic surgery skills training program using fresh human skin would improve medical students' surgical skills. DESIGN: We conducted a preliminary survey of medical students to clarify the need for further training in basic surgery procedures. A new approach using simulation to teach surgical skills on human skin was set up. The procedural skills of 15 randomly selected students were assessed in the operating room before and after participation in the simulation, using Objective Structured Assessment of Technical Skills. Furthermore, subjective assessment was performed based on students' self-evaluation. The data were analyzed using SPSS, version 21 (SPSS, Inc., Chicago, IL). SETTING: The study took place at the Inselspital, Bern University Hospital. PARTICIPANTS: A total of 186 pre-final-year medical students were enrolled into the preliminary survey; 15 randomly selected medical students participated in the basic surgical skills training course on the fresh human skin operating room. RESULTS: The preliminary survey revealed the need for a surgical skills curriculum. The simulation approach we developed showed significant (p < 0.001) improvement for all 12 surgical skills, with mean cumulative precourse and postcourse values of 31.25 ± 5.013 and 45.38 ± 3.557, respectively. The self-evaluation contained positive feedback as well. CONCLUSION: Simulation of surgery using human tissue samples could help medical students become more proficient in handling surgical instruments before stepping into a real surgical situation. We suggest further studies evaluating our proposed teaching method and the possibility of integrating this simulation approach into the medical school curriculum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Minimally invasive surgery creates two technological opportunities: (1) the development of better training and objective evaluation environments, and (2) the creation of image guided surgical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas an SSEP is expected to be identical every time a trial is recorded. An algorithm was developed using Chebychev time windowing for preconditioning of SSEP trials to retain the morphological characteristics of somatosensory evoked potentials (SSEP). This preconditioning was followed by the application of a principal component analysis (PCA)-based algorithm utilizing quasi-stationarity of EEG on 12 preconditioned trials. A unique Walsh transform operation was then used to identify the position of the SSEP event. An alarm is raised when there is a 10% time in latency deviation and/or 50% peak-to-peak amplitude deviation, as per the clinical requirements. The algorithm shows consistency in the results in monitoring SSEP in up to 6-hour surgical procedures even under this significantly reduced number of trials. In this study, the analysis was performed on the data recorded in 29 patients undergoing surgery during which the posterior tibial nerve was stimulated and SSEP response was recorded from scalp. This method is shown empirically to be more clinically viable than present day approaches. In all 29 cases, the algorithm takes 4sec to extract an SSEP signal, as compared to conventional methods, which take several minutes. The monitoring process using the algorithm was successful and proved conclusive under the clinical constraints throughout the different surgical procedures with an accuracy of 91.5%. Higher accuracy and faster execution time, observed in the present study, in determining the SSEP signals provide a much improved and effective neurophysiological monitoring process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with the question of when the double branched cover of an alternating knot can arise by Dehn surgery on a knot in S^3. We approach this problem using a surgery obstruction, first developed by Greene, which combines Donaldson's Diagonalization Theorem with the $d$-invariants of Ozsvath and Szabo's Heegaard Floer homology. This obstruction shows that if the double branched cover of an alternating knot or link L arises by surgery on S^3, then for any alternating diagram the lattice associated to the Goeritz matrix takes the form of a changemaker lattice. By analyzing the structure of changemaker lattices, we show that the double branched cover of L arises by non-integer surgery on S^3 if and only if L has an alternating diagram which can be obtained by rational tangle replacement on an almost-alternating diagram of the unknot. When one considers half-integer surgery the resulting tangle replacement is simply a crossing change. This allows us to show that an alternating knot has unknotting number one if and only if it has an unknotting crossing in every alternating diagram. These techniques also produce several other interesting results: they have applications to characterizing slopes of torus knots; they produce a new proof for a theorem of Tsukamoto on the structure of almost-alternating diagrams of the unknot; and they provide several bounds on surgeries producing the double branched covers of alternating knots which are direct generalizations of results previously known for lens space surgeries. Here, a rational number p/q is said to be characterizing slope for K in S^3 if the oriented homeomorphism type of the manifold obtained by p/q-surgery on K determines K uniquely. The thesis begins with an exposition of the changemaker surgery obstruction, giving an amalgamation of results due to Gibbons, Greene and the author. It then gives background material on alternating knots and changemaker lattices. The latter part of the thesis is then taken up with the applications of this theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of diagnosis and treatment of degenerative spine disorders is increasing, increasing the need for surgical intervention. Posterior spine fusion is one surgical intervention used to treat various spine degeneration pathologies To minimize the risk of complications and provide patients with positive outcomes, preoperative planning and postsurgical assessment are necessary. This PhD aimed to investigate techniques for the surgical planning and assessment of spine surgeries. Three main techniques were assessed: stereophotogrammetric motion analysis, 3D printing of complex spine deformities and finite element analysis of the thoracolumbar spine. Upon reviewing the literature on currently available spine kinematics protocol, a comprehensive motion analysis protocol to measure the multi-segmental spine motion was developed. Using this protocol, the patterns of spine motion in patients before and after posterior spine fixation was mapped. The second part investigated the use of virtual and 3D printed spine models for the surgical planning of complex spine deformity correction. Compared to usual radiographic images, the printed model allowed optimal surgical intervention, reduced surgical time and provided better surgeon-patient communication. The third part assessed the use of polyetheretherketone rods auxiliary to titanium rods to reduce the stiffness of posterior spine fusion constructs. Using a finite element model of the thoracolumbar spine, the rods system showed a decrease in the overall stress of the uppermost instrumented vertebra when compared to regular fixation approaches. Finally, a retrospective biomechanical assessment of a lumbopelvic reconstruction technique was investigated to assess the patients' gait following the surgery, the implant deformation over the years and the extent of bony fusion between spine and implant. In conclusion, this thesis highlighted the need to provide surgeons with new planning and assessment techniques to better understand postsurgical complications. The methodologies investigated in this project can be used in the future to establish a patient-specific planning protocol.