293 resultados para SUPERNOVAE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new, detailed analysis of late-time mid-infrared observations of the Type II-P supernova (SN) 2003gd. At about 16 months after the explosion, the mid-IR flux is consistent with emission from 4 x 10(-5) M. of newly condensed dust in the ejecta. At 22 months emission from pointlike sources close to the SN position was detected at 8 and 24 mu m. By 42 months the 24 mu m flux had faded. Considerations of luminosity and source size rule out the ejecta of SN 2003gd as the main origin of the emission at 22 months. A possible alternative explanation for the emission at this later epoch is an IR echo from preexisting circumstellar or interstellar dust. We conclude that, contrary to the claim of Sugerman and coworkers, the mid-IR emission from SN 2003gd does not support the presence of 0.02 M. of newly formed dust in the ejecta. There is, as yet, no direct evidence that core-collapse supernovae are major dust factories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O-I] lambda lambda 6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M-circle dot, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M-circle dot of Ni-56 has been synthesized in the explosion. No connection to a GRB can be firmly established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the discovery of two ultraluminous supernovae (SNe) at z approximate to 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M-bol approximate to -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10(51) erg. We find photospheric velocities of 12,000-19,000 km s(-1) with no evidence for deceleration measured across similar to 3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pre-explosion observations of the Type II-P supernovae 2006my, 2006ov and 2004et are re-analysed. In the cases of supernovae 2006my and 2006ov we argue that the published candidate progenitors are not coincident with their respective supernova sites in pre-explosion Hubble Space Telescope observations. We therefore derive upper luminosity and mass limits for the unseen progenitors of both these supernovae, assuming they are red supergiants: 2006my (log L/L-circle dot = 4.51; m

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Such events are predicted to be relatively common in the early Universe during the first episodes of star-formation. To understand these distant explosions it is vital to study nearby CCSNe arising in low-metallicity environments to determine if the explosions have different characteristics to those studied locally in high-metallicity galaxies. Many of the nearby supernova searches concentrate their efforts on high star-formation rate galaxies, hence biasing the discoveries to metal rich regimes. Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photometric and spectroscopic observations of the faint Supernovae (SNe) 2002kg and 2003gm, and their precursors, in NGC 2403 and NGC 5334, respectively, are presented. The properties of these SNe are discussed in the context of previously proposed scenarios for faint SNe: low-mass progenitors producing underenergetic SNe; SNe with ejecta constrained by a circumstellar medium; and outbursts of massive Luminous Blue Variables (LBVs). The last scenario has been referred to as 'Type V SNe', 'SN impostors' or 'fake SNe'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for the progenitors of six core-collapse supernovae (CCSNe) in archival Hubble Space Telescope (HST) WFPC2 pre-explosion imaging is presented. These SNe are 1999an, 1999br, 1999ev, 2000ds, 2000ew and 2001B. Post-explosion imaging of the SNe, with the HST ACS/WFC, has been utilized with the technique of differential astrometry to identify the progenitor locations on the pre-explosion imaging. SNe 1999br, 1999ev, 2000ew and 2001B are recovered in late-time imaging, and estimates of the progenitor locations on the pre-explosion imaging, with subpixel accuracy, have been made. Only the progenitor of the Type II-P SN 1999ev has been recovered, on pre-explosion F555W imaging, at a 4.8 sigma significance level. Assuming a red supergiant progenitor, the pre-explosion observation is consistent with M-ZAMS = 15-18 M-circle dot. The progenitors of the other five SNe were below the 3 sigma detection threshold of the pre-explosion observations. The detection thresholds were translated to mass limits for the progenitors by comparison with stellar evolution models. Pre-explosion observations of the peculiarly faint SN 1999br limit the mass of a red supergiant progenitor to M-ZAMS