851 resultados para SUPERNOVA REMNANT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. We investigate the growth of hydromagnetic waves driven by streaming cosmic rays in the precursor environment of a supernova remnant shock.

Aims. It is known that transverse waves propagating parallel to the mean magnetic field are unstable to anisotropies in the cosmic ray distribution, and may provide a mechanism to substantially amplify the ambient magnetic field. We quantify the extent to which temperature and ionisation fractions modify this picture.

Methods. Using a kinetic description of the plasma we derive the dispersion relation for a collisionless thermal plasma with a streaming cosmic ray current. Fluid equations are then used to discuss the effects of neutral-ion collisions.

Results. We calculate the extent to which the environment into which the cosmic rays propagate influences the growth of the magnetic field, and determines the range of possible growth rates.

Conclusions. If the cosmic ray acceleration is efficient, we find that very large neutral fractions are required to stabilise the growth of the non-resonant mode. For typical supernova parameters in our Galaxy, thermal effects do not significantly alter the growth rates. For weakly driven modes, ion-neutral damping can dominate over the instability at more modest ionisation fractions. In the case of a supernova shock interacting with a molecular clouds, such as in RX J1713.7-3946, with high density and low ionisation, the modes can be rapidly damped.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas9. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion(1). The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star(2,3) (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf(3,4) (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel(5). Both channels might contribute to the production of type Ia supernovae(6,7), but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned(10). More recently, observations have restricted surviving companions to be small, main-sequence stars(11-13), ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. We report the infrared identification of the X-ray source 2XMM J191043.4+091629.4, which was detected by XMM-Newton/EPIC in the vicinity of the Galactic supernova remnant W49B. Aims. The aim of this work is to establish the nature of the X-ray source 2XMM J191043.4+091629.4 studying both the infrared photometry and spectroscopy of the companion. Methods. We analysed UKIDSS images around the best position of the X-ray source and obtained spectra of the best candidate using NICS in the Telescopio Nazionale Galileo (TNG) 3.5-m telescope. We present photometric and spectroscopic TNG analyses of the infrared counterpart of the X-ray source, identifying emission lines in the K-band. The H-band spectra does not present any significant feature. Results. We have shown that the Brackett γ H i at 2.165 μm, and He i at 2.184 μm and at 2.058 μm are significantly present in the infrared spectrum. The CO bands are also absent from our spectrum. Based on these results and the X-ray characteristics of the source, we conclude that the infrared counterpart is an early B-type supergiant star with an E(B − V) = 7.6 ± 0.3 at a distance of 16.0 ± 0.5 kpc. This would be, therefore, the first high-mass X-ray binary in the Outer Arm at galactic longitudes of between 30° and 60°.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. We report results of an X-ray study of the supernova remnant (SNR) G344.7-0.1 and the point-like X-ray source located at the geometrical center of the SNR radio structure. Methods. The morphology and spectral properties of the remnant and the central X-ray point-like source were studied using data from the XMM-Newton and Chandra satellites. Archival radio data and infrared Spitzer observations at 8 and 24 mu m were used to compare and study its multi-band properties at different wavelengths. Results. The XMM-Newton and Chandra observations reveal that the overall X-ray emission of G344.7-0.1 is extended and correlates very well with regions of bright radio and infrared emission. The X-ray spectrum is dominated by prominent atomic emission lines. These characteristics suggest that the X-ray emission originated in a thin thermal plasma, whose radiation is represented well by a plane-parallel shock plasma model (PSHOCK). Our study favors the scenario in which G344.7-0.1 is a 6 x 10^3 year old SNR expanding in a medium with a high density gradient and is most likely encountering a molecular cloud on the western side. In addition, we report the discovery of a soft point-like X-ray source located at the geometrical center of the radio SNR structure. The object presents some characteristics of the so-called compact central objects (CCO). However, its neutral hydrogen absorption column (N_H) is inconsistent with that of the SNR. Coincident with the position of the source, we found infrared and optical objects with typical early-K star characteristics. The X-ray source may be a foreground star or the CCO associated with the SNR. If this latter possibility were confirmed, the point-like source would be the farthest CCO detected so far and the eighth member of the new population of isolated and weakly magnetized neutron stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observations of H3+ in the Galactic diffuse interstellar medium (ISM) have led to various surprising results, including the conclusion that the cosmic-ray ionization rate (zeta_2) is about 1 order of magnitude larger than previously thought. The present survey expands the sample of diffuse cloud sight lines with H3+ observations to 50, with detections in 21 of those. Ionization rates inferred from these detections are in the range (1.7+-1.0)x10^-16 s^-1 < zeta_2 < (10.6+-6.8)x10^-16 s^-1 with a mean value of zeta_2=(3.3+-0.4)x10^-16 s^-1. Upper limits (3sigma) derived from non-detections of H3+ are as low as zeta_2 < 0.4x10^-16 s^-1. These low upper-limits, in combination with the wide range of inferred cosmic-ray ionization rates, indicate variations in zeta_2 between different diffuse cloud sight lines. Calculations of the cosmic-ray ionization rate from theoretical cosmic-ray spectra require a large flux of low-energy (MeV) particles to reproduce values inferred from observations. Given the relatively short range of low-energy cosmic rays --- those most efficient at ionization --- the proximity of a cloud to a site of particle acceleration may set its ionization rate. Variations in zeta_2 are thus likely due to variations in the cosmic-ray spectrum at low energies resulting from the effects of particle propagation. To test this theory, H3+ was observed in sight lines passing through diffuse molecular clouds known to be interacting with the supernova remnant IC 443, a probable site of particle acceleration. Where H3+ is detected, ionization rates of zeta_2=(20+-10)x10^-16 s^-1 are inferred, higher than for any other diffuse cloud. These results support both the concept that supernova remnants act as particle accelerators, and the hypothesis that propagation effects are responsible for causing spatial variations in the cosmic-ray spectrum and ionization rate. Future observations of H3+ near other supernova remnants and in sight lines where complementary ionization tracers (OH+, H2O+, H3O+) have been observed will further our understanding of the subject.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses similar to 1.1 M-aS (TM), hybrid WDs in a binary system may easily approach the Chandrasekhar mass (M-Ch) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-M-Ch hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 M-aS (TM) of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-M-Ch WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-M-Ch bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching M-Ch to be of the order of 1 per cent of the Galactic SN Ia rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ∼0.2 M of material containing ∼0.07 M of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲ 0.6 M of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ∼1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Interactive Installation with holographic 3D projections, satellite imagery, surround sound and intuitive body driven interactivity. Remnant (v.1) was commissioned by the 2010 TreeLine ecoArt event - an initiative of the Sunshine Coast Council and presented at a remnant block of subtropical rainforest called ‘Mary Cairncross Scenic Reserve’ - located 100kms north of Brisbane near the township of Maleny. V2 was later commissioned for KickArts Gallery, Cairns, re-presenting the work in a new open format which allowed audiences to both experience the original power of the work and to also understand the construction of the work's powerful illusory, visual spaces. This art-science project focused upon the idea of remnant landscapes - isolated blocks of forest (or other vegetation types) typically set within a patchwork quilt of surrounding farmed land. Participants peer into a mysterious, long tunnel of imagery whilst navigating entirely through gentle head movements - allowing them to both 'steer' in three dimensions and also 'alight', as a butterfly might, upon a sector of landscape - which in turn reveals an underlying 'landscape of mind'. The work challenges audiences to re-imagine our conceptions of country in ways that will lead us to better reconnect and sustain today’s heavily divided landscapes. The research field involved developing new digital image projection methods, alternate embodied interaction and engagement strategies for eco-political media arts practice. The context was the creation of improved embodied and improvisational experiences for participants, further informed by ‘eco-philosophical’ and sustainment theories. By engaging with deep conceptions of connectivity between apparently disparate elements, the work considered novel strategies for fostering new desires, for understanding and re-thinking the requisite physical and ecological links between ‘things’ that have been historically shattered. The methodology was primarily practice-led and in concert with underlying theories. The work’s knowledge contribution was to question how new media interactive experience and embodied interaction might prompt participants to reflect upon appropriate resources and knowledges required to generate this substantive desire for new approaches to sustainment. This accentuated through the power of learning implied by the works' strongly visual and kinaesthetic interface (i.e. the tunnel of imagery and the head and torso operated navigation). The work was commissioned by the 2010 TreeLine ecoArt event - an initiative of the Sunshine Coast Council and the second version was commissioned by Kickarts Gallery, Cairns, specifically funded by a national optometrist chain. It was also funded in development by Arts Queensland and reviewed in Realtime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This film, website and gallery installation shown at UTS Gallery, Sydney, presented a glimpse into the foregrounding process of the REMNANT/EMERGENCY Artlab - held in Sydney in November 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The REMNANT/EMERGENCY Artlab was funded by the Australia Council InterArts ArtLab Program in 2010 and involves 22 months of rigorous research and experimentation in several countries. The process will be developed between a core transdisciplinary team of practicing media artists, designers and engineers where possible working in consultation and collaboration with local creatives at each venue. Our team asserts that today’s environmental crisis is underpinned by a deep cultural crisis - and so to get our ‘house in order’ we urgently need to create better and more powerful ‘images’ of what a ‘citizen-led’, sustainable world might be. This ArtLab’s core aim is therefore to begin to understand how to develop and create such ‘powerful images’.