585 resultados para SUPERCONDUCTING LUNI2B2C
Resumo:
This thesis is a study of how heat is transported in non-steady-state conditions from a superconducting Rutherford cable to a bath of superfluid helium (He II). The same type of superconducting cable is used in the dipole magnets of the Large Hadron Collider (LHC). The dipole magnets of the LHC are immersed in a bath of He II at 1.9 K. At this temperature helium has an extremely high thermal conductivity. During operation, heat needs to be efficiently extracted from the dipole magnets to keep their superconducting state. The thermal stability of the magnets is crucial for the operation of the LHC, therefore it is necessary to understand how heat is transported from the superconducting cables to the He II bath. In He II the heat transfer can be described by the Landau regime or by the Gorter-Mellink regime, depending on the heat flux. In this thesis both measurements and numerical simulation have been performed to study the heat transfer in the two regimes. A temperature increase of 8 2 mK of the superconducting cables was successfully measured experimentally. A new numerical model that covers the two heat transfer regimes has been developed. The numerical model has been validated by comparison with existing experimental data. A comparison is made between the measurements and the numerical results obtained with the developed model.
Resumo:
The study of AC losses in superconducting pancake coils is of utmost importance for the development of superconducting devices. Due to different technical difficulties this study is usually performed considering one of two approaches: considering superconducting coils of few turns and studying AC losses in a large frequency range vs. superconducting coils with a large number of turns but measuring AC losses only in low frequencies. In this work, a study of AC losses in 128 turn superconducting coils is performed, considering frequencies ranging from 50 Hz till 1152 Hz and currents ranging from zero till the critical current of the coils. Moreover, the study of AC losses considering two different simultaneous harmonic components is also performed and results are compared to the behaviour presented by the coils when operating in a single frequency regime. Different electrical methods are used to verify the total amount of AC losses in the coil and a simple calorimetric method is presented, in order to measure AC losses in a multi-harmonic context. Different analytical and numerical methods are implemented and/or used, to design the superconducting coils and to compute the total amount of AC losses in the superconducting system and a comparison is performed to verify the advantages and drawbacks of each method.
Resumo:
The magnetic-field dependence of the magnetization of cylinders, disks, and spheres of pure type-I superconducting lead was investigated by means of isothermal measurements of first magnetization curves and hysteresis cycles. Depending on the geometry of the sample and the direction and intensity of the applied magnetic field, the intermediate state exhibits different irreversible features that become particularly highlighted in minor hysteresis cycles. The irreversibility is noticeably observed in cylinders and disks only when the magnetic field is parallel to the axis of revolution and is very subtle in spheres. When the magnetic field decreases from the normal state, the irreversibility appears at a temperature-dependent value whose distance to the thermodynamic critical field depends on the sample geometry. The irreversible features in the disks are altered when they are submitted to an annealing process. These results agree well with very recent high-resolution magneto-optical experiments in similar materials that were interpreted in terms of transitions between different topological structures for the flux configuration in the intermediate state. A discussion of the relative role of geometrical barriers for flux entry and exit and pinning effects as responsible for the magnetic irreversibility is given.
Resumo:
In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.
Resumo:
Due to font problem on the tilte field the titlte of the thesis is corrected here. The title of the thesis is: Superconducting properties and their enhancement in ReBa2Cu3O7-delta (RE = Y and Gd) films prepared by pulsed laser deposition
Resumo:
In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.
Resumo:
This thesis is devoted to the study of the hyperfine properties in iron-based superconductors and the synthesis of these compounds and related phases. During this work polycrystalline chalcogenide samples with stoichiometry 1:1 (FeTe1-χSχ, FeSe1-x) and pnictide samples with stoichiometry 1:2:2 (BaFe2(As1-χPχ)2, EuFe2(As1-x Px)2) were synthesized by solid-state reaction methods in vacuum and in a protecting Ar atmosphere. In several cases post-annealing in oxygen atmosphere was employed. The purity and superconducting properties of the obtained samples were checked with X-ray diffraction, SQUID and resistivity measurements. For studies of the magnetic properties of the investigated samples Mössbauer spectroscopy was used. Using low-temperature measurements around Tc and various values of the source velocity the hyperfine interactions were obtained and the magnetic and structural properties in the normal and superconducting states could be studied. Mössbauer measurements together with XRD characterization were also used for the detection of impurity phases. DFT calculations were used for the theoretical study of Mössbauer parameters for pnictide-based ᴻsamples BaFe2(As1-xPx)2 and EuFe2(As1-xPx)2.
Resumo:
The present Master’s thesis presents theoretical description of the extraodinary behavior of the confined Indium nanoparticles. Superconducting properties of nanoparticles and nanocomposites are extensively reviewed. Special attention has been paid to phase fluctuation, shell and disordered effects. The experimental data has been obtained and provided by Dmitry Shamshur from Ioffe Physical Technical Institute. The investigated material represents a highly ordered system of silicate spheres filled with indium metal, where the In nanoparticles are interconnected between each other. Bulk indium is a superconductor with crititcal superconducting temperature Tc0 = 3:41 K. But indium nanoparticles exhibit different behavior, the critical temperature rise by approximately 20% up to 4.15 K. As well as transition of the indium particles to type-II superconductivity with high critical magnetic fields. Such diversity is explained by finite size effects which originate from nanosize of the samples.
Resumo:
A method is presented for determining the composition of thin films containing the elements Bi, Sr, Br, Cu, and Ca. Quantitative x-ray fluorescence (XRF) consisting of radioactive sources (secondary foil excitor 241Am-Mo source and 55Pe source), a Si(Li) detector, and a multichannel analyzer were employed. The XRF system was calibrated by using sol gel thin films of known element composition and also by sputtered thin films analyzed by the conventional Rutherford Back Scattering (RBS). The XRF system has been used to assist and optimize the sputter target composition required to produce high-Tc BiSrCaCuO films with the desired metal composition.
Resumo:
We prepared samples of MgB2 and ran sets of experiments aimed for investigation of superconducting properties under pressure. We found the value of pressure derivative of the transition temperature -1.2 ± 0.05 K/GPa. Then, using McMillan formula, we found that the main contribution to the change of the transition temperature under the pressure is due to the change in phonon frequencies. Griineisen parameter was calculated to be 7g = 2.4. Our results suggest that MgB2 is a conventional superconductor.
Resumo:
It is important that long superconducting tape must have desired strain tolerance (less reduction of Jc with applied strains) and stress tolerance (less reduction of JC in applied stresses) for its use as coils and magnets. Ag addition to the BPSCCO system has many advantages with its physical and chemical inertness to the system, reduces the processing temperature, and promotes the grain growth, grain alignment and connectivity. All these not only enhance the critical current density of the tapes but also improve the mechanical properties. But the published results show very much scattering on the type of Ag additive to be selected, method of addition and its optimum percentage. Also there are some negative reports in this regard. The present work has been undertaken to study the effect of silver addition in different forms (Ag powder, Ag2O, AgNO3) on the superconducting and mechanical properties of (Bi,Pb)-2223/Ag tapes and to find out a suitable form of Ag additive and its optimum percentage to have better superconducting and mechanical properties. Also it is the aim of the present work is to optimise the process parameters needed to prepare (Bi,Pb)-2223/Ag multifilamentary tapes of length ~ 12 m in solenoid and pancake coil forms with good critical current density and homogeneity of J C along the length of the tapes.