898 resultados para SUBTILIS ATCC6633


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Journal of Bacteriology (Nov 2007) 8371-8376

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic Acid Research (2007) Vol.37 N. 14 4755-4766

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in “Biology” at the Institute of Chemical and Biological Technology of the New University of Lisbon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: A esporulação em Bacillus subtilis é controlada por uma cascata de factores sigma da polimerase do RNA. F e E controlam os estágios precoces do desenvolvimento no pré-esporo e na célula mãe, respectivamente. Numa fase intermédia da diferenciação, quando a célula mãe acaba por envolver o pré-esporo, F é substituído por G e E é substituído por K. Vários mecanismos asseguram que a actividade dos diferentes factores sigma seja confinada a uma janela temporal precisa na célula adequada. Neste estudo, investigámos a função de um factor anti-G, designado por CsfB. Mostramos que para além da sua função de inibição da actividade do factor G em células pré-divisionais, CsfB é também necessário na célula mãe num estágio tardio do desenvolvimento. Mostramos que a expressão de csfB é activada na célula mãe a partir de um promotor dependente de K. Contudo, demonstramos que CsfB interage directamente com E e não com K, e que CsfB é suficiente para inibir a actividade transcricional dependente de E em células vegetativas de B. subtilis. Propomos que CsfB contribui para reduzir o período dependente de E, na linha de expressão genética da célula mãe, desse modo reduzindo a sobreposição entre os regulões E e K e aumentado a fidelidade do processo de desenvolvimento. Uma segunda proteína, YabK, partilha semelhança estrutural com CsfB. YabK é produzida no pré-esporo sob o comando de F, e é necessária para a esporulação. YabK contribui para a transição F/G no programa genético do pré-esporo, porque uma mutação que torna F sensível a CsfB ultrapassa parcialmente a função de YabK na esporulação. No entanto, YabK e CsfB funcionam por mecanismos diferentes, uma vez que YabK não liga directamente a F.---------ABSTRACT: Gene expression during spore development in Bacillus subtilis is governed by a cascade of RNA polymerase sigma factors. F and E control the early stages of development in the forespore and in the mother cell, respectively. At an intermediate stage in the differentiation process, when the larger mother cell finishes engulfment of the smaller forespore, F is replaced by G and E is replaced by K. Several mechanisms ensure the proper timing of activation of the cell type-specific sigma factors. Here, we have investigated the funtion of an anti-sigma G factor, called CsfB. We show here that in addition to its role in inhibiting G in pre-divisional cells, CsfB is also required in the mother cell at a late stage in development. We show that the expression of csfB is activated in the mother cell from a K-specific promoter. However, we demonstrate that CsfB binds directly to E but not to K in a yeast two-hybrid assay, and that CsfB is sufficient to inhibit E-dependent transcriptional activity in vegetative cells of B. subtilis. We posit that CsfB contributes to shutting off the early, E-controlled period in the mother cell line of gene expression, thus reducing the overlap between deployment of the E and K regulons and increasing the fidelity of the developmental process. A second protein, YabK, shares structural similarity with CsfB. YabK is produced in the forespore under F control, and is required for efficient sporulation. YabK contributes to the transition from the F- to the G-dependent period of gene expression, because a mutation that renders F sensitive to CsfB partially bypasses the need for YabK. Yet, YabK and CsfB must function in the control of sigma factor activity by different mechanisms because YabK does not bind directly to F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: RodZ é um componente do sistema morfogenético das células bacterianas. É uma proteína transmembranar que localiza em bandas ao longo do eixo longitudinal da célula. Em Bacillus subtilis, RodZ consiste numa porção citoplasmática, RodZn, e em uma parte extra-citoplasmática, RodZc. RodZn contém um domínio em helixturn- helix (HTH), enquanto que RodZc pode ser dividido num domínio coiled-coil e num domínio terminal C, de função desconhecida. Um segmento transmembranar (TM) único separa RodZn de RodZc. A eliminação de rodZ causa alongamento do nucleóide e leva à produção de células polares nucleadas. Aqui, mostramos que RodZn é estruturado, estável e em hélice α. Descobrimos que as substituições Y32A e L33A na suposta hélice de reconhecimento (3) do motivo HTH, bem como as substituições Y49A e F53A, fora do motivo HTH (4), causam divisão assimétrica, mas apenas as últimas levam à deslocalização sub-celular de RodZ. Sugerimos que as hélices 3 e 4 são utilizadas para uma interacção proteína-proteína ou proteína- DNA essencial para divisão celular enquanto que 4 deve contactar um componente do citosqueleto, possivelmente MreB, uma vez que a correcta localização sub-celular de RodZ depende desta proteína. Em todos os mutantes as células polares são anucleadas, pelo que concluímos que o alongamento do nucleóide não é um prérequisito para divisão assimétrica. RodZc é largamente não estruturado mas com conteúdo de folha , sendo estabilizado pelo domínio coiled-coil. Mostramos uma relação homóloga entre RodZc e a bomba de transporte Na+/Ca2+ NCX1 e identificámos dois resíduos no domínio C, G265 e N275, essenciais para a manutenção da forma celular. Estes resíduos fazem parte de um motivo em gancho que pode actuar como um local de interacção com um ligando desconhecido. RodZn e RodZc são monoméricos em solução. Contudo, na membrana, RodZ interage consigo própria num sistema de dois híbridos (Split-Ubiquitin) em levedura, sugerindo que possa formar multímeros in vivo.-----------ABSTRACT: RodZ is a transmembrane component of the bacterial core morphogenic apparatus. RodZ localizes in bands long the longitudinal axis of the cell, and it is though to functionally link the cell wall to the actin cytoskeleton. In Bacillus subtilis, RodZ consists of a cytoplasmic moiety, RodZn, and an extracytoplasmic moiety, RodZc. RodZn contains a predicted helix-turn-helix domain, whereas RodZc is thought to contain a coiled-coil region and a terminal C domain of unknown function. A single transmembrane domain separates RodZn from RodZc. Deletion of rodZ causes elongation of the nucleoid and leads to the production of polar minicells containing DNA. Here, we have studied the structure and function of RodZn and RodZc. We show that RodZn is a stable, folded, -helical domain. We discovered that the Y32A and L33A substitutions within the presumptive recognition helix (3) of the HTH motif, as well as the Y49A and F53A substitutions outside of the HTH motif (in 4) cause asymmetric cell division. However, only the substitutions in 4 cause sub-celular delocalization of RodZ. We suggest that 3 and 4 are used for a protein-protein or protein-DNA interaction important for cell division, whereas 4 is likely to contact a cytoskeletal component, presumably MreB. The polar cells formed by all the mutants are anucleate. We conclude that nucleoid elongation is not a prerequisite for asymmetric division. RodZc appears to be a largely unstructured domain, with some -sheet content, and is stabilized by the coiled-coil region. We show a homology relationship between RodZc and the NCX1 Na+/Ca2+ transporter and we found two residues within the C domain, G265 and N275, that are important for cell shape determination. These residues are predicted to be essential determinants of a claw-like motif, which may act as a binding site for an unknown ligand. Both the isolated RodZn and RodZc proteins are monomeric in solution. However, because full-length RodZ interacts with itself in a split-ubiquitin yeast two-hybrid assay, we suggest that it may dimerize or form higher order multimers in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thesis to obtain a Master degree in Structural and Functional Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannans (linear mannan, glucomannan, galactomannan and galactoglucomannan) are the major constituents of the hemicellulose fraction in softwoods and show great importance as a renewable resource for fuel or feedstock applications. As complex polysaccharides, mannans can only be degraded through a synergistic action of different mannan-degrading enzymes, mannanases. Microbial mannanases are mainly extracellular enzymes that can act in wide range of pH and temperature, contributing to pulp and paper, pharmaceutical, food and feed, oil and textile successful industrial applications. Knowing and controlling these microbial mannan-degrading enzymes are essential to take advantage of their great biotechnological potential. The genome of the laboratory 168 strain of Bacillus subtilis carries genes gmuA-G dedicated to the degradation and utilization of glucomannan, including an extracellular -mannanase. Recently, the genome sequence of an undomesticated strain of B. subtilis, BSP1, was determined. In BSP1, the gmuA-G operon is maintained, interestingly, however, a second cluster of genes was found (gam cluster), which comprise a second putative extracellular β-mannanase, and most likely specify a system for the degradation and utilization of a different mannan polymer, galactoglucomannan. The genetic organization and function of the gam cluster, and whether its presence in BSP1 strain results in new hemicellulolytic capabilities, compared to those of the laboratory strain, was address in this work. In silico and in vivo mRNA analyses performed in this study revealed that the gam cluster, comprising nine genes, is organized and expressed in at least six different transcriptional units. Furthermore, cloning, expression, and production of Bbsp2923 in Escherichia coli was achieved and preliminary characterization shows that the enzyme is indeed a β-mannanase. Finally, the high hemicellulolytic capacity of the undomesticated B. subtilis BSP1, demonstrated in this work by qualitative analyses, suggests potential to be used in the food and feed industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A superfície dos esporos bacterianos é constituída por uma estrutura multi-proteica, denominada manto, com funções de proteção e de interação com o meio circundante. CotB é um componente abundante do manto do esporo de Bacillus subtilis. Durante a formação do manto, a proteína CotB, de 46 kDa (CotB-46), sofre uma modificação pós-traducional, que a converte numa espécie com uma mobilidade eletroforética de 66 kDa (CotB-66). Outras duas proteínas do manto, CotH e CotG, são necessárias para a formação de CotB-66. CotH é uma proteína morfogenética essencial para a montagem do manto, e um homólogo estrutural de cinases Ser/Thr de tipo eucariota. CotB, por seu lado, possui quatro repetições de uma sequência rica em serinas/lisinas/argininas na sua metade Cterminal, enquanto que a metade N-terminal contém dois domínios Sm-like, associados normalmente a interações RNA-RNA e RNA-proteína. A super-expressão de cotB em E. coli resulta numa proteína de 46 kDa, mas a co-expressão de cotB com cotG e cotH leva à produção de uma forma de CotB de 66kDa. Na ausência de CotG ou de CotH ou na presença de uma forma inativa de CotH, com a substituição D228Q no seu centro ativo putativo, não se verifica a formação de CotB-66. CotH sofre auto-fosforilação e é insensível ao inibidor de largo espectro staurosporina. Além disso, mostramos que CotB-46 é fosforilado diretamente por CotH in vitro. Descobrimos que a substituição D228Q resulta em alterações na composição, estrutura e propriedades do manto que se aproximam daquelas causadas por uma mutação de eliminação do gene. Mostramos que a modificação de CotB in vivo é dependente de CotG e da atividade de cinase de CotH. Sugerimos que durante a formação do manto de B. subtilis CotH fosforila CotB na sua metade C-terminal, usando CotG como co-fator.