1000 resultados para STARS: CARBON
Resumo:
Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles.
Resumo:
We analyzed GFP cells after 24h cultivated on superhydrophilic vertically aligned carbon nanotube scaffolds. We produced two different densities of VACNT scaffolds on Ti using Ni or Fe catalysts. A simple and fast oxygen plasma treatment promoted the superhydrophilicity of them. We used five different substrates, such as: as-grown VACNT produced using Ni as catalyst (Ni), as-grown VACNT produced using Fe as catalyst (Fe), VACNT-O produced using Ni as catalyst (NiO), VACNT-O produced using Fe as catalyst (FeO) and Ti (control). The 4',6-diamidino-2-phenylindole reagent nuclei stained the adherent cells cultivated on five different analyzed scaffolds. We used fluorescence microscopy for image collect, ImageJ® to count adhered cell and GraphPad Prism 5® for statistical analysis. We demonstrated in crescent order: Fe, Ni, NiO, FeO and Ti scaffolds that had an improved cellular adhesion. Oxygen treatment associated to high VACNT density (group FeO) presented significantly superior cell adhesion up to 24h. However, they do not show significant differences compared with Ti substrates (control). We demonstrated that all the analyzed substrates were nontoxic. Also, we proposed that the density and hydrophilicity influenced the cell adhesion behavior.
Resumo:
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.
Resumo:
The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF), carbon (CF) and glass/carbon (G/CF) fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM). Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p<0.05) bond strength than the self-cured agent. For the dual agent, CF presented similar bond strength to GF (p>0.05), but higher than that of G/CF (p<0.05). For the self-cured agent, no significant differences (p>0.05) were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.
Resumo:
Carbon and nitrogen biogeochemical cycles in savannas are strongly regulated by the seasonal distribution of precipitation and pulses of nutrients released during the wetting of the dry soil and are critical to the dynamics of microorganisms and vegetation. The objective of this study was to investigate the spatial and temporal variability of C and N isotope ratios as indicators of the cycling of these elements in a cerrado sensu stricto area, within a protected area in a State Park in the state of São Paulo, Brazil. The foliar δ13C and δ15N values varied from -33.6 to -24.4 ‰ and -2.5 to 4.5 ‰, respectively. The δ13C values showed a consistent relationship with canopy height, revealing the importance of structure of the canopy over the C isotopic signature of the vegetation. Carbon isotopic variations associated with the length of the dry season indicated the importance of recent fixed C to the integrated isotopic signature of the leaf organic C. The studied Cerrado species showed a depleted foliar δ15N, but a wide range of foliar Nitrogen with no difference among canopy heights. However, seasonal variability was observed, with foliar δ15N values being higher in the transition period between dry and rainy seasons. The variation of the foliar C and N isotope ratios presented here was consistent with highly diverse vegetation with high energy available but low availability of water and N.
Resumo:
Equatorial podzols are soils characterized by thick sandy horizons overlying more clayey horizons. Organic matter produced in the topsoil is transferred in depth through the sandy horizons and accumulate at the transition, at a depth varying from 1 to more than 3 m, forming deep horizons rich in organic matter (Bh horizons). Although they cover great surfaces in the equatorial zone, these soils are still poorly known. Studying podzols from Amazonia, we found out that the deep Bh horizons in poorly drained podzol areas have a thickness higher than 1m and store unexpected amounts of carbon. The average for the studied area was 66.7 +/- 5.8 kgCm(-2) for the deep Bh and 86.8 +/- 7.1 kgCm(-2) for the whole profile. Extrapolating to the podzol areas of the whole Amazonian basin has been possible thanks to digital maps, giving an order of magnitude around 13.6 +/- 1.1 PgC, at least 12.3 PgC higher than previous estimates. This assessment should be refined by additional investigations, not only in Amazonia but in all equatorial areas where podzols have been identified. Because of the lack of knowledge on the quality and behaviour of the podzol organic matter, the question of the feedback between the climate and the equatorial podzol carbon cycle is open.
Resumo:
Land cover change constitutes one of main way of alteration of soil organic matter in both quantitative and qualitative terms. The goal of this study was to compare the carbon stock and the isotopic signature of the organic matter in the soil of areas with different land use,covered with forest and grass (pasture). The study area is located at Sorocaba, SP, Brazil. Using un-deformed soil samples, we measured the carbon content and bulk density. The isotopic signature of soil carbon was determined through the analysis of isotopic ratio (12)C/(13)C. The pasture soil stocks 48% less carbon than the soil covered by natural forest. The isotopic signature indicated that 42.2% of organic matter of the soil covered by pasture is originated from grasses. This characterizes a highly degradation of organic matter in the environment, both quantitatively and qualitatively. Hence, some guidelines of recuperation are described in order to restore the soil organic matter, structure and porosity.
Resumo:
Searches for field horizontal-branch (FHB) stars in the halo of the Galaxy in the past have been carried out by several techniques, such as objective-prism surveys and visual or infrared photometric surveys. By choosing adequate color criteria, it is possible to improve the efficiency of identifying bona fide FHB stars among the other objects that exhibit similar characteristics, such as main-sequence A-stars, blue stragglers, subdwarfs, etc. In this work, we report the results of a spectroscopic survey carried out near the south Galactic pole intended to validate FHB stars originally selected from the HK objective-prism survey of Beers and colleagues, based on near-infrared color indices. A comparison between the stellar spectra obtained in this survey with theoretical stellar atmosphere models allows us to determine T(eff), log g, and [Fe/H] for 13 stars in the sample. Stellar temperatures were calculated from measured (B-V)(o), when this measurement was available (16 stars). The color index criteria adopted in this work are shown to correctly classify 30% of the sample as FHB, 25% as non-FHB (main-sequence stars and subdwarfes), whereas 40% could not be distinguished between FHB and main-sequence stars. We compare the efficacy of different color criteria in the literature intended to select FHB stars, and discuss the use of the Mg II 4481 line to estimate the metallicity.
Resumo:
Ultraprecision diamond turning was used to evaluate the surface integrity of a carbon nanotube (CNT) composite as a function of the cutting conditions and the percentage of CNT in the epoxy matrix. The effects of cutting conditions on the chip morphology and surface roughness were analysed. The results showed that an increase in the percentage of CNT may influence the mechanism of material removal and consequently improve the quality of the machined surface. When smaller quantities of CNT (0.02 and 0.07 wt %) are present in the matrix, microcracks form within the cutting grooves (perpendicular to the cutting direction). This indicates that the amount of CNT on the epoxy matrix may have a direct influence on the mechanical properties of these materials. Chips removed from the CNT composite samples were analysed by scanning electron microscopy in order to correlate the material removal mechanism and the surface generation process. The area average surface roughness Sa was influenced by the material removal mechanism (Sa ranging from 0.28 to 1.1 mu m).
Resumo:
This work presents a model for the magnetic Barkhausen jump in low carbon content steels. The outcomes of the model evidence that the Barkhausen jump height depends on the coercive field of the pinning site and on the mean free path of the domain wall between pinning sites. These results are used to deduce the influence of the microstructural features and of the magnetizing parameters on the amplitude and duration of the Barkhausen jumps. In particular, a theoretical expression, establishing the dependence of the Barkbausen jump height on the carbon content and grain size, is obtained. The model also reveals the dependence of the Barkhausen jump on the applied frequency and amplitude. Theoretical and experimental results are presented and compared, being in good agreement. (C) 2008 American Institute of Physics.
Resumo:
Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.
Resumo:
Aspergillus niveus produced high levels of alpha-amylase and glucoamylase in submerged fermentation using the agricultural residue cassava peel as a carbon source. In static conditions, the amylase production was substantially greater than in the agitated condition. The optimized culture conditions were initially at pH 5.0, 35 degrees C during 48 hours. Amylolytic activity was still improved (50%) with a mixture of cassava peel and soluble starch in the proportion 1:1 (w/w). The crude extract exhibited temperature and pH optima approximately 70 degrees C and 4.5, respectively. Amylase activity was stable for 1 h at 60 degrees C, and at pH values between 3.0 and 7.0. The enzyme hydrolysed preferentially maltose, starch, penetrose, amylose, isomaltose, maltotriose, glycogen and amylopectin, and not hydrolysed cyclodextrin (alpha and beta), trehalose and sucrose. In the first hour of reaction on soluble starch, the hydrolysis products were glucose and maltose, but after two hours of hydrolysis, glucose was the unique product formed, confirming the presence in the crude extract of an alpha-amylase and a glucoamylase.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.