1000 resultados para SQUEEZED STATES
Resumo:
In classical field theory, the ordinary potential V is an energy density for that state in which the field assumes the value ¢. In quantum field theory, the effective potential is the expectation value of the energy density for which the expectation value of the field is ¢o. As a result, if V has several local minima, it is only the absolute minimum that corresponds to the true ground state of the theory. Perturbation theory remains to this day the main analytical tool in the study of Quantum Field Theory. However, since perturbation theory is unable to uncover the whole rich structure of Quantum Field Theory, it is desirable to have some method which, on one hand, must go beyond both perturbation theory and classical approximation in the points where these fail, and at that time, be sufficiently simple that analytical calculations could be performed in its framework During the last decade a nonperturbative variational method called Gaussian effective potential, has been discussed widely together with several applications. This concept was described as a means of formalizing our intuitive understanding of zero-point fluctuation effects in quantum mechanics in a way that carries over directly to field theory.
Resumo:
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man`ko states and circular squeezed states. The relation between these states and the ""classical"" trajectories is investigated, and we present numerical explorations of some semiclassical quantities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Back-to-Back Correlations (BBC) of particle-antiparticle pairs are predicted to appear if hot and dense hadronic matter is formed in high energy nucleus-nucleus collisions. The BBC are related to in-medium mass-modification and squeezing of the quanta involved. Although the suppression of finite emission times were already known, the effects of finite system sizes and of collective phenomena had not been studied yet. Thus, for testing the survival and magnitude of the effect in more realistic situations, we study the BBC when mass-modification occurs in a finite sized, thermalized medium, considering a non-relativistically expanding fireball with finite emission time, and evaluating the width of the back-to-back correlation function. We show that the BBC signal indeed survives the expansion and flow effects, with sufficient magnitude to be observed at RHIC.
Resumo:
We present the results of an operational use of experimentally measured optical tomograms to determine state characteristics (purity) avoiding any reconstruction of quasiprobabilities. We also develop a natural way how to estimate the errors (including both statistical and systematic ones) by an analysis of the experimental data themselves. Precision of the experiment can be increased by postselecting the data with minimal (systematic) errors. We demonstrate those techniques by considering coherent and photon-added coherent states measured via the time-domain improved homodyne detection. The operational use and precision of the data allowed us to check purity-dependent uncertainty relations and uncertainty relations for Shannon and Renyi entropies.
Resumo:
We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods.
Resumo:
We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.
Resumo:
We compare theoretically the tripartite entanglement available from the use of three concurrent x(2) nonlinearities and three independent squeezed states mixed on beamsplitters, using an appropriate version of the van Loock-Furusawa inequalities. We also define three-mode generalizations of the Einstein-Podolsky-Rosen paradox which are an alternative for demonstrating the inseparability of the density matrix.
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.
Resumo:
We develop criteria sufficient to enable detection of macroscopic coherence where there are not just two macroscopically distinct outcomes for a pointer measurement, but rather a spread of outcomes over a macroscopic range. The criteria provide a means to distinguish a macroscopic quantum description from a microscopic one based on mixtures of microscopic superpositions of pointer-measurement eigenstates. The criteria are applied to Gaussian-squeezed and spin-entangled states.
Resumo:
We review the field of quantum optical information from elementary considerations to quantum computation schemes. We illustrate our discussion with descriptions of experimental demonstrations of key communication and processing tasks from the last decade and also look forward to the key results likely in the next decade. We examine both discrete (single photon) type processing as well as those which employ continuous variable manipulations. The mathematical formalism is kept to the minimum needed to understand the key theoretical and experimental results.
Resumo:
We examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.
Resumo:
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.