977 resultados para SPIN-LABEL


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and its transmembrane AT(1) receptor were selected in order to test an innovative strategy that might allow the assessment of the agonist binding site in the receptor molecule. With the use of the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) paramagnetic probe, a biologically active agonist (TOAC(1)-Ang II), as well as an inactive control (TOAC(4)-Ang II) analogs were mixed in solution with various synthesized AT(1) fragments. Comparative intermolecular interactions, as estimated by analyzing the EPR spectra of solutions, suggested the existence of an agonist binding site containing a sequence composed of portions of the N-terminal (13-17) and the third extracellular loop (266-278) fragments of the AT(1) molecule. Therefore, this combined EPR-TOAC approach shows promise as an alternative for use also in other applications related to specific intermolecular association processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiotensin II (AngII) and bradykinin (BK) derivatives containing the TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin label were synthesized by solid phase methodology. Ammonium hydroxide (pH 10, 50degreesC, 1 h) was the best means for reverting nitroxide protonation occurring during peptide cleavage. EPR spectra yielded rotational correlation times for internally labeled analogs that were nearly twice as large as those of N-terminally labeled analogs. Except for TOAC(1)-AngII and TOAC(0)-BK, which showed high intrinsic activities, other derivatives were inactive in smooth muscle preparations. These active paramagnetic analogs may be useful for conformational studies in solution and in the presence of model and biological membranes. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spin label TEMPO does not show a binding to myoglobin molecule in solution. This is probably due to the fact that this protein does not have a hydrophobic pocket large enough to accommodate the TEMPO molecule. In the crystal the spin label is bound and two kinds of spectra are observed: one isotropic and the other anisotropic. The anisotropic site is probably an intermolecular one. The correlation time for the label in the crystal is very sensitive to temperature showing a transition near 30 °C. This change can be explained as a result of the conformational change observed for myoglobin near this temperature: the motion of the spin label becomes more restricted below this temperature. Change in hydration is the probable cause of this structural change. The changes in the EPR spectra of the anisotropic label suggest that it is bound near the first layers of protein in the crystal. © 1985 Societá Italiana di Fisica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of phloretin in the structure and hydration of dimiristoyl phosphatidylcholine vesicles (DMPC) was investigated by electron paramagnetic resonance technique (EPR) at the bilayer core of membrane, using 14-PCSL spin label derivative of phosphatidylcoline. The spectra obtained by pure DMPC vesicles and with addition of phloretin were simulated using the Nonlinear Least-Square program, at the tempearature between 15 oC to 50 oC. Through these simulations it was possible to analyse the membrane hydration and bilayer order, to understand the interaction between DMPC aggregates and phloretin. The results show that the phloretin decreases the membrane hydration in both gel and fluid phases. This reduction of water molecules is accompanied by increasing of the bilayer order at this micro-region

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 degrees C) than above the transition temperature (above 25 degrees C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitatiori is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Miltefosine (MT) is an alkylphospholipid approved for breast cancer metastasis and visceral leishmaniasis treatments, although the respective action mechanisms at the molecular level remain poorly understood. In this work, the interaction of miltefosine with the lipid component of stratum corneum (SC), the uppermost skin layer, was studied by electron paramagnetic resonance (EPR) spectroscopy of several fatty acid spin-labels. In addition, the effect of miltefosine on (i) spherical lipid vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and (ii) lipids extracted from SC was also investigated, by EPR and time-resolved polarized fluorescence methods. In SC of neonatal Wistar rats, 4% (w/w) miltefosine give rise to a large increase of the fluidity of the intercellular membranes, in the temperature range from 6 to about 50 degrees C. This effect becomes negligible at temperatures higher that ca. 60 degrees C. In large unilamelar vesicles of DPPC no significant changes could be observed with a miltefosine concentration 25% molar, in close analogy with the behavior of biomimetic vesicles prepared with bovine brain ceramide, behenic acid and cholesterol. In these last samples, a 25 mol% molar concentration of miltefosine produced only a modest decrease in the bilayer fluidity. Although miltefosine is not a feasible skin permeation enhancer due to its toxicity, the information provided in this work could be of utility in the development of a MT topical treatment of cutaneous leishmaniasis. Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Struktur des Haupt-Lichtsammlerproteins II (LHCIIb) höherer Pflanzen ist aufgrund kristallographischer Strukturanalysen zu 94% aufgeklärt. Dennoch ist es bislang nicht gelungen, die aminoterminale Region des Komplexes vollständig zu lokalisieren. In einem ersten Abschnitt dieser Dissertation sollte anhand einer vergleichenden Bindungsstudie mit Hilfe von in vitro - Rekonstitutionen des LHCIIb geklärt werden, ob es sich bei dem so genannten N - terminalen Trimerisierungsmotiv des Lichtsammlerproteins um eine Interaktionsstelle mit dem Phospholipid Phosphatidylglyzerin handelt. Dazu wurden mehrere vergleichende Lipidbindungsstudien an rekombinantem Wildtyp - Protein und verschiedenen LHCIIb - Trimerisierungsmotiv - Mutanten durchgeführt, die allerdings nicht zu reproduzierbaren Ergebnissen führten.Im zweiten Teil dieser Arbeit wurden intra- und intermolekulare Distanzmessungen an rekombinantem LHCIIb mit Hilfe der Elektronenspin - Resonanz - Spektroskopie durchgeführt. Dazu wurden zweifach mit einem Spin - Label markierte LHCIIb - Monomere und Trimere mit je einer Markierungsposition pro Monomer benutzt. Im Anschluss an die Messungen wurden die erhaltenen Distanzinformationen zusammen mit den bereits zugänglichen Kristallstrukturdaten des Komplexes für eine Modellierung der aminoterminalen Region des LHCIIb verwendet. Die resultierenden Modelle lassen den Schluss zu, dass es im LHCIIb - Trimer zu konformativen Restriktionen des Aminoterminus kommt. Dem entgegen findet man eine größere konformative Diversität in den vermessenen monomeren Komplexen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ziel der vorliegenden Arbeit war die Untersuchung von Struktur und Dynamik in Polymer-Ton-Nanokompositen mittels EPR-Spektroskopie; damit sollten ein Beitrag zur Analyse der Tensidschicht in solchen Systemen geleistet und die Ergebnisse anderer Messmethoden ergänzt werden. Die Tensidschicht in Polymer-Ton-Nanokompositen nimmt großen Einfluss auf das System, denn sie bestimmt die Wechselwirkung zwischen Ton und Polymer: Damit hydrophiler Ton gut mit hydrophobem Polymer (hier Polystyrol) mischbar ist, muss das Schichtsilikat zunächst mit Tensiden organisch-modifiziert werden; dies geschieht durch Kationenaustausch der Natriumionen im Ton gegen Tenside. Um mit Hilfe der EPR einen Einblick in die Tensidschicht zu gewinnen, muss etwa 1% der zur Tonmodifizierung eingesetzten Amphiphile spinmarkiert sein. So gelang es im Rahmen dieser Arbeit, Tenside mit verschiedenen Kopfgruppen, nämlich Trimethylammonium- bzw. Trimethylphosphoniumtenside, zu synthetisieren und sie an verschiedenen Positionen ihrer hydrophoben Alkylkette mit einem Nitroxidradikal zu markieren. Das Nitroxidradikal diente als Spinsonde für die EPR-Experimente. Neben der Synthese verschiedener, spinmarkierter Amphiphile, der anschließenden Darstellung organisch-modifizierten Tons (Kationenaustausch) und verschiedener Polymer-Ton-Nanokomposite (Schmelzinterkalation) wurden alle Proben mittels EPR-Spektroskopie untersucht; dabei wurden sowohl cw- als auch gepulste Messtechniken eingesetzt. Aus cw-Experimenten ging hervor, dass die Dynamik der gesamten Tensidschicht mit der Temperatur zunimmt und die Mobilität der hydrophoben Tensidalkylkette mit wachsendem Abstand zu ihrer Kopfgruppe wächst. Zugabe von Polymer behindert bei steigender Temperatur das Anschwellen des Tons bei Aufschmelzen der Tensidschicht; die Dynamik des Systems ist eingeschränkt. Mit Hilfe gepulster EPR-Messungen (ENDOR und ESEEM), die Informationen über Abstände bzw. Kontakt in den untersuchten Systemen lieferten, ließ sich ein Strukturmodell der Polymer-Ton-Nanokomposite skizzieren, das Vorstellungen anderer, älterer Methoden unterstützt: Hierbei richten sich die Tenside in Multischichten unterschiedlicher Mobilität parallel zur Tonoberfläche aus.