980 resultados para SPECT-CT
Resumo:
Tomographic image can be degraded, partially by patient based attenuation. The aim of this paper is to quantitatively verify the effects of attenuation correction methods Chang and CT in 111In studies through the analysis of profiles from abdominal SPECT, correspondent to a uniform radionuclide uptake organ, the left kidney.
Resumo:
Aim: When planning SIRT using 90Y microspheres, the partition model is used to refine the activity calculated by the body surface area (BSA) method to potentially improve the safety and efficacy of treatment. For this partition model dosimetry, accurate determination of mean tumor-to-normal liver ratio (TNR) is critical since it directly impacts absorbed dose estimates. This work aimed at developing and assessing a reliable methodology for the calculation of 99mTc-MAA SPECT/CT-derived TNR ratios based on phantom studies. Materials and methods: IQ NEMA (6 hot spheres) and Kyoto liver phantoms with different hot/background activity concentration ratios were imaged on a SPECT/CT (GE Infinia Hawkeye 4). For each reconstruction with the IQ phantom, TNR quantification was assessed in terms of relative recovery coefficients (RC) and image noise was evaluated in terms of coefficient of variation (COV) in the filled background. RCs were compared using OSEM with Hann, Butterworth and Gaussian filters, as well as FBP reconstruction algorithms. Regarding OSEM, RCs were assessed by varying different parameters independently, such as the number of iterations (i) and subsets (s) and the cut-off frequency of the filter (fc). The influence of the attenuation and diffusion corrections was also investigated. Furthermore, both 2D-ROIs and 3D-VOIs contouring were compared. For this purpose, dedicated Matlab© routines were developed in-house for automatic 2D-ROI/3D-VOI determination to reduce intra-user and intra-slice variability. Best reconstruction parameters and RCs obtained with the IQ phantom were used to recover corrected TNR in case of the Kyoto phantom for arbitrary hot-lesion size. In addition, we computed TNR volume histograms to better assess uptake heterogeneityResults: The highest RCs were obtained with OSEM (i=2, s=10) coupled with the Butterworth filter (fc=0.8). Indeed, we observed a global 20% RC improvement over other OSEM settings and a 50% increase as compared to the best FBP reconstruction. In any case, both attenuation and diffusion corrections must be applied, thus improving RC while preserving good image noise (COV<10%). Both 2D-ROI and 3D-VOI analysis lead to similar results. Nevertheless, we recommend using 3D-VOI since tumor uptake regions are intrinsically 3D. RC-corrected TNR values lie within 17% around the true value, substantially improving the evaluation of small volume (<15 mL) regions. Conclusions: This study reports the multi-parameter optimization of 99mTc MAA SPECT/CT images reconstruction in planning 90Y dosimetry for SIRT. In phantoms, accurate quantification of TNR was obtained using OSEM coupled with Butterworth and RC correction.
Resumo:
OBJETIVO: Determinar, experimentalmente, os coeficientes de recuperação do 111In e do 99mTc usando imagens SPECT. MATERIAIS E MÉTODOS: Quatro diferentes concentrações de 111In e de 99mTc foram usadas para quantificar a atividade em esferas de diferentes tamanhos. As imagens foram obtidas com um equipamento híbrido SPECT/CT, com dois detectores. A reconstrução das imagens foi realizada usando o método iterativo ordered subset expectation maximization (OSEM). A correção de atenuação foi realizada com o uso de um mapa de atenuação e a correção de espalhamento foi realizada usando a técnica das janelas de energia. RESULTADOS: Os resultados mostraram que o efeito do volume parcial foi observado de forma mais significativa para as esferas com volume < 6 ml. Para o 111In, os resultados mostram uma dependência com relação às concentrações usadas nas esferas e ao nível de background usado. Para o 99mTc, pôde-se observar uma tendência à subestimação dos resultados quando os níveis mais altos de background foram utilizados. CONCLUSÃO: É necessário usar os fatores de correção para compensar o efeito do volume parcial em objetos com volume < 6 ml para ambos os radionuclídeos. A subtração das contagens espúrias presentes nas imagens SPECT foi o fator que mais influenciou na quantificação da atividade nessas esferas.
Resumo:
Somatostatin receptor PET tracers such as [68Ga-DOTA,1-Nal3]-octreotide (68Ga-DOTANOC) and [68Ga-DOTA,Tyr3]-octreotate (68Ga-DOTATATE) have shown promising results in patients with neuroendocrine tumors, with a higher lesion detection rate than is achieved with 18F-fluorodihydroxyphenyl-l-alanine PET, somatostatin receptor SPECT, CT, or MR imaging. 68Ga-DOTANOC has high affinity for somatostatin receptor subtypes 2, 3, and 5 (sst2,3,5). It has a wider receptor binding profile than 68Ga-DOTATATE, which is sst2-selective. The wider receptor binding profile might be advantageous for imaging because neuroendocrine tumors express different subtypes of somatostatin receptors. The goal of this study was to prospectively compare 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT in the same patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) and to evaluate the clinical impact of 68Ga-DOTANOC PET/CT. Methods: Eighteen patients with biopsy-proven GEP-NETs were evaluated with 68Ga-DOTANOC and 68Ga-DOTATATE using a randomized crossover design. Labeling of DOTANOC and DOTATATE with 68Ga was standardized using a fully automated synthesis device. PET/CT findings were compared with 3-phase CT scans and in some patients with MR imaging, 18F-FDG PET/CT, and histology. Uptake in organs and tumor lesions was quantified and compared by calculation of maximum standardized uptake values (SUVmax) using volume computer-assisted reading. Results: Histology revealed low-grade GEP-NETs (G1) in 4 patients, intermediate grade (G2) in 7, and high grade (G3) in 7. 68Ga-DOTANOC and 68Ga-DOTATATE were false-negative in only 1 of 18 patients. In total, 248 lesions were confirmed by cross-sectional and PET imaging. The lesion-based sensitivity of 68Ga-DOTANOC PET was 93.5%, compared with 85.5% for 68Ga-DOTATATE PET (P = 0.005). The better performance of 68Ga-DOTANOC PET is attributed mainly to the significantly higher detection rate of liver metastases rather than tumor differentiation grade. Multivariate analysis revealed significantly higher SUVmax in G1 tumors than in G3 tumors (P = 0.009). This finding was less pronounced with 68Ga-DOTANOC (P > 0.001). Altogether, 68Ga-DOTANOC changed treatment in 3 of 18 patients (17%). Conclusion: The sst2,3,5-specific radiotracer 68Ga-DOTANOC detected significantly more lesions than the sst2-specific radiotracer 68Ga-DOTATATE in our patients with GEP-NETs. The clinical relevance of this finding has to be proven in larger studies.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.
Resumo:
UNLABELLED (111)In-DOTA-exendin-4 SPECT/CT has been shown to be highly efficient in the detection of insulinomas. We aimed at determining whether novel PET/CT imaging with [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]exendin-4 ((68)Ga-DOTA-exendin-4) is feasible and sensitive in detecting benign insulinomas. METHODS (68)Ga-DOTA-exendin-4 PET/CT and (111)In-DOTA-exendin-4 SPECT/CT were performed in a randomized cross-over order on 5 patients with endogenous hyperinsulinemic hypoglycemia. The gold standard for comparison was the histologic diagnosis after surgery. RESULTS In 4 patients histologic diagnosis confirmed a benign insulinoma, whereas one patient refused surgery despite a positive (68)Ga-DOTA-exendin-4 PET/CT scan. In 4 of 5 patients, previously performed conventional imaging (CT or MR imaging) was not able to localize the insulinoma. (68)Ga-DOTA-exendin-4 PET/CT correctly identified the insulinoma in 4 of 4 patients, whereas (111)In-DOTA-exendin-4 SPECT/CT correctly identified the insulinoma in only 2 of 4 patients. CONCLUSION These preliminary data suggest that the use of (68)Ga-DOTA-exendin-4 PET/CT in detecting hidden insulinomas is feasible.
Resumo:
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. Methods: An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). Results: JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Conclusion: Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified.
Resumo:
The objectives of the study were to evaluate the performance of sentinel lymph node biopsy (SLNB) in detecting occult metastases in papillary thyroid carcinoma (PTC) and to correlate their presence to tumor and patient characteristics. Twenty-three clinically node-negative PTC patients (21 females, mean age 48.4 years) were prospectively enrolled. Patients were submitted to sentinel lymph node (SLN) lymphoscintigraphy prior to total thyroidectomy. Ultrasound-guided peritumoral injections of (99m)Tc-phytate (7.4 MBq) were performed. Cervical single-photon emission computed tomography and computed tomography (SPECT/CT) images were acquired 15 min after radiotracer injection and 2 h prior to surgery. Intra-operatively, SLNs were located with a gamma probe and removed along with non-SLNs located in the same neck compartment. Papillary thyroid carcinoma, SLNs and non-SLNs were submitted to histopathology analysis. Sentinel lymph nodes were located in levels: II in 34.7 % of patients; III in 26 %; IV in 30.4 %; V in 4.3 %; VI in 82.6 % and VII in 4.3 %. Metastases in the SLN were noted in seven patients (30.4 %), in non-SLN in three patients (13.1 %), and in the lateral compartments in 20 % of patients. There were significant associations between lymph node (LN) metastases and the presence of angio-lymphatic invasion (p = 0.04), extra-thyroid extension (p = 0.03) and tumor size (p = 0.003). No correlations were noted among LN metastases and patient age, gender, stimulated thyroglobulin levels, positive surgical margins, aggressive histology and multifocal lesions. Sentinel lymph node biopsy can detect occult metastases in PTC. The risk of a metastatic SLN was associated with extra-thyroid extension, larger tumors and angio-lymphatic invasion. This may help guide future neck dissection, patient surveillance and radioiodine therapy doses.
Resumo:
En l'actualitat hi ha controvèrsia sobre el tractament del coll negatiu en el carcinoma faringolaríngeo. En el nostre estudi hem inclòs 11 pacients afectats de carcinoma escamós faringolaríngeo N0, i després de realitzar una injecció amb Tc99m-nanocoloide hem identificat els possibles ganglis sentinella mitjançant limfogammagrafia, SPECT-CT i sonda gamma. S'han detectat de mitjana 2,0 possibles ganglis sentinella. En tres casos no s'ha detectat gangli sentinella. En un futur la realització d'aquesta tècnica, que està en fase de desenvolupament, pot evitar el sobretractament cervical.
Resumo:
Adoptive transfer therapy of in vitro-expanded tumor-specific cytolytic T lymphocytes (CTLs) can mediate objective cancer regression in patients. Yet, technical limitations hamper precise monitoring of posttherapy T cell responses. Here we show in a mouse model that fused single photon emission computed tomography and x-ray computed tomography allows quantitative whole-body imaging of (111)In-oxine-labeled CTLs at tumor sites. Assessment of CTL localization is rapid, noninvasive, three-dimensional, and can be repeated for longitudinal analyses. We compared the effects of lymphodepletion before adoptive transfer on CTL recruitment and report that combined treatment increased intratumoral delivery of CTLs and improved antitumor efficacy. Because (111)In-oxine is a Food and Drug Administration-approved clinical agent, and human SPECT-CT systems are available, this approach should be clinically translatable, insofar as it may assess the efficacy of immunization procedures in individual patients and lead to development of more effective therapies.
Resumo:
Tumors in non-Hodgkin lymphoma (NHL) patients are often proximal to the major blood vessels in the abdomen or neck. In external-beam radiotherapy, these tumors present a challenge because imaging resolution prevents the beam from being targeted to the tumor lesion without also irradiating the artery wall. This problem has led to potentially life-threatening delayed toxicity. Because radioimmunotherapy has resulted in long-term survival of NHL patients, we investigated whether the absorbed dose (AD) to the artery wall in radioimmunotherapy of NHL is of potential concern for delayed toxicity. SPECT resolution is not sufficient to enable dosimetric analysis of anatomic features of the thickness of the aortic wall. Therefore, we present a model of aortic wall toxicity based on data from 4 patients treated with (131)I-tositumomab. METHODS: Four NHL patients with periaortic tumors were administered pretherapeutic (131)I-tositumomab. Abdominal SPECT and whole-body planar images were obtained at 48, 72, and 144 h after tracer administration. Blood-pool activity concentrations were obtained from regions of interest drawn on the heart on the planar images. Tumor and blood activity concentrations, scaled to therapeutic administered activities-both standard and myeloablative-were input into a geometry and tracking model (GEANT, version 4) of the aorta. The simulated energy deposited in the arterial walls was collected and fitted, and the AD and biologic effective dose values to the aortic wall and tumors were obtained for standard therapeutic and hypothetical myeloablative administered activities. RESULTS: Arterial wall ADs from standard therapy were lower (0.6-3.7 Gy) than those typical from external-beam therapy, as were the tumor ADs (1.4-10.5 Gy). The ratios of tumor AD to arterial wall AD were greater for radioimmunotherapy by a factor of 1.9-4.0. For myeloablative therapy, artery wall ADs were in general less than those typical for external-beam therapy (9.4-11.4 Gy for 3 of 4 patients) but comparable for 1 patient (32.6 Gy). CONCLUSION: Blood vessel radiation dose can be estimated using the software package 3D-RD combined with GEANT modeling. The dosimetry analysis suggested that arterial wall toxicity is highly unlikely in standard dose radioimmunotherapy but should be considered a potential concern and limiting factor in myeloablative therapy.
Resumo:
PURPOSE: Adenoma is the main parathyroid disorder leading to primary hyperparathyroidism (PHP). Minimally invasive parathyroidectomy (MIP) is recognized as a valid procedure for adenoma-related PHP. It requires precise preoperative localization combining Tc-99m-MIBI (methoxy-isobutyl-isonitrile) scintigraphy and single-photon emission computed tomography (SPECT) with x-ray computed tomography (CT) and intraoperative confirmation of successful excision by change in intact parathormone (iPTH) levels. The study aim was to assess the surgery success in relation to these two parameters. METHODS: All patients operated on for PHP from 2005 to mid-2014 at our institution were retrospectively reviewed. MIP was performed in case of precise preoperative adenoma localization on scintigraphy, absence of past cervical surgery, and absence of concomitant thyroid resection necessity. In these patients, iPTH levels were monitored intraoperatively. Confirmation criteria for iPTH values were a return to normal level or a decrease >50 % of basal iPTH level. RESULTS: There were 197 PHP operations during the study period: 118 MIP and 79 bilateral neck explorations (BNEs). The MIP success rate was 95 % (112/118) with a preoperative MIBI scan ± CT accurate in 94 % (111/118) of the patients and with correct iPTH in 90 % (106/118) of the cases. Among the 12 iPTH levels that did not meet the confirmation criteria, 10 returned to normal range by postoperative day 2. Treatment failure appeared in three patients (one BNE, two MIPs). CONCLUSIONS: Tc-99m-MIBI dual-phase scintigraphy with SPECT/CT is the key examination for functional and morphological parathyroid adenoma localization. If preoperative scintigraphy is obvious and intraoperative assessment is clear, one could possibly safely omit iPTH, as it may lead to unnecessary BNE in primary PHP.
Resumo:
High levels of glucagon-like peptide-1 (GLP-1) receptor expression in human insulinomas and gastrinomas provide an attractive target for imaging, therapy, and intraoperative tumor localization, using receptor-avid radioligands. The goal of this study was to establish a tumor model for GLP-1 receptor targeting and to use a newly designed exendin-4-DTPA (DTPA is diethylenetriaminepentaacetic acid) conjugate for GLP-1 receptor targeting. METHODS: Exendin-4 was modified C-terminally with Lys(40)-NH(2), whereby the lysine side chain was conjugated with Ahx-DTPA (Ahx is aminohexanoic acid). The GLP-1 receptor affinity (50% inhibitory concentration [IC(50)] value) of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 as well as the GLP-1 receptor density in tumors and different organs of Rip1Tag2 mice were determined. Rip1Tag2 mice are transgenic mice that develop insulinomas in a well-defined multistage tumorigenesis pathway. This animal model was used for biodistribution studies, pinhole SPECT/MRI, and SPECT/CT. Peptide stability, internalization, and efflux studies were performed in cultured beta-tumor cells established from tumors of Rip1Tag2 mice. RESULTS: The GLP-1 receptor affinity of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 was found to be 2.1 +/- 1.1 nmol/L (mean +/- SEM). Because the GLP-1 receptor density in tumors of Rip1Tag2 mice was very high, a remarkably high tumor uptake of 287 +/- 62 %IA/g (% injected activity per gram tissue) was found 4 h after injection. This resulted in excellent tumor visualization by pinhole SPECT/MRI and SPECT/CT. In accordance with in vitro data, [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 uptake in Rip1Tag2 mice was also found in nonneoplastic tissues such as pancreas and lung. However, lung and pancreas uptake was distinctly lower compared with that of tumors, resulting in a tumor-to-pancreas ratio of 13.6 and in a tumor-to-lung ratio of 4.4 at 4 h after injection. Furthermore, in vitro studies in cultured beta-tumor cells demonstrated a specific internalization of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4, whereas peptide stability studies indicated a high metabolic stability of the radiopeptide in beta-tumor cells and human blood serum. CONCLUSION: The high density of GLP-1 receptors in insulinomas as well as the high specific uptake of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 in the tumor of Rip1Tag2 mice indicate that targeting of GLP-1 receptors in insulinomas may become a useful imaging method to localize insulinomas in patients, either preoperatively or intraoperatively. In addition, Rip1Tag2 transgenic mice represent a suitable animal tumor model for GLP-1 receptor targeting.
Resumo:
Receptors for regulatory peptides are overexpressed in a variety of human cancers. They represent the molecular basis for in vivo imaging with radiolabeled peptide probes. Somatostatin-derived tracers, designed to image the sst2-overexpressing neuroendocrine tumors, have enjoyed almost 2 decades of successful development and extensive clinical applications. More recent developments include second- and third-generation somatostatin analogs, with a broader receptor subtype profile or with antagonistic properties. Emerging tracers for other peptide receptors, including cholecystokinin/gastrin and GLP-1 analogs for neuroendocrine tumors, bombesin and neuropeptide-Y analogs for prostate or breast cancers, or Arg-Gly-Asp peptides for neoangiogenesis labeling, are also in current development. Application fields include both SPECT/CT and PET/CT.
Resumo:
OBJECTIVES: To map the primary prostatic lymphatic landing sites using a multimodality technique. METHODS: Thirty-four patients with organ-confined prostate cancer (cT1-cT2; cN0) underwent single-photon emission computed tomography fused with data from computed tomography (SPECT/CT) (n=33) or magnetic resonance imaging (SPECT/MRI) (n=1) 1h after ultrasound-guided intraprostatic injection of technecium (Tc-99m) nanocolloid. The presence of lymph nodes (LNs) containing Tc-99m was confirmed intraoperatively with a gamma probe. A backup extended pelvic lymphadenectomy (PLND) was performed to preclude missed primary lymphatic landing sites. The SPECT/CT/MRI data sets were used to generate a three-dimensional projection of each LN site. RESULTS: A total of 317 LNs (median, 10 per patient; range, 3-19) were detected by SPECT/CT/MRI, 314 of which were confirmed by gamma probe. With an "extended" PLND, two thirds of all primary prostatic lymphatic landing sites are resected compared with only one third with a "limited" PLND. CONCLUSIONS: The multimodality technique presented here enables precise mapping of the primary prostatic lymphatic landing sites. PLND for prostate cancer should include not only the external and obturator regions as well as the portions medial and lateral to the internal iliac vessels, but also the common iliac LNs at least up to the ureteric crossing, thus removing approximately 75% of all nodes potentially harbouring metastasis.