1000 resultados para SOS response


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromobacterium violaceum is a free-living bacillus, Gram-negative commonly found in water and sand of tropical and subtropical regions. One of its main characteristic it's the ability to produce the purple pigment named violacein, that shows countless biological activities. In 2003, the genome of this organism was totally sequenced and revealed important informations about the physiology of this bacteria. However, few post-genomics studies had been accomplished. This work evaluated the protein profile of C. violaceum cultivated in LB medium at 28ºC that allowed the identification and characterization of proteins related to a possible secretion system that wasn't identified and characterized yet in C. violaceum, to the quorum sensing system, to regulatory process of transcription and translation, stress adaptation and biotechnological potential. Moreover, the response of the bacteria to UVC radiation was evaluated. The comparison of the protein profile, analyzed through 2-D electrophoresis, of the control group versus the treatment group allowed the identification of 52 proteins that arose after stress induction. The obtained results enable the elaboration of a stress response pathway in C. violaceum generated by the UVC light. This pathway, that seems to be a general stress response, involves the expression of proteins related to cellular division, purine and pirimidine metabolism, heat chock or chaperones, energy supply, regulation of biofilm formation, transport, regulation of lytic cycle of bacteriophages, besides proteins that show undefined function. Despite the response present similarities with the classic SOS response of E. coli, we still cannot assert that C. violaceum shows a SOS-like response, mainly due to the absence of characterization of a LexA-like protein in this organism

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spectrum of mutations induced by the naturally occurring DNA adduct pyrimido[1,2-α]purin-10(3H)-one (M1G) was determined by site-specific approaches using M13 vectors replicated in Escherichia coli. M1G was placed at position 6256 in the (−)-strand of M13MB102 by ligating the oligodeoxynucleotide 5′-GGT(M1G)TCCG-3′ into a gapped-duplex derivative of the vector. Unmodified and M1G-modified genomes containing either a cytosine or thymine at position 6256 of the (+)-strand were transformed into repair-proficient and repair-deficient E. coli strains, and base pair substitutions were quantitated by hybridization analysis. Modified genomes containing a cytosine opposite M1G resulted in roughly equal numbers of M1G→A and M1G→T mutations with few M1G→C mutations. The total mutation frequency was ≈1%, which represents a 500-fold increase in mutations compared with unmodified M13MB102. Transformation of modified genomes containing a thymine opposite M1G allowed an estimate to be made of the ability of M1G to block replication. The (−)-strand was replicated >80% of the time in the unadducted genome but only 20% of the time when M1G was present. Correction of the mutation frequency for the strand bias of replication indicated that the actual frequency of mutations induced by M1G was 18%. Experiments using E. coli with different genetic backgrounds indicated that the SOS response enhances the mutagenicity of M1G and that M1G is a substrate for repair by the nucleotide excision repair complex. These studies indicate that M1G, which is present endogenously in DNA of healthy human beings, is a strong block to replication and an efficient premutagenic lesion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromobacterium violaceum is a free-living bacillus, Gram-negative commonly found in water and sand of tropical and subtropical regions. One of its main characteristic it's the ability to produce the purple pigment named violacein, that shows countless biological activities. In 2003, the genome of this organism was totally sequenced and revealed important informations about the physiology of this bacteria. However, few post-genomics studies had been accomplished. This work evaluated the protein profile of C. violaceum cultivated in LB medium at 28ºC that allowed the identification and characterization of proteins related to a possible secretion system that wasn't identified and characterized yet in C. violaceum, to the quorum sensing system, to regulatory process of transcription and translation, stress adaptation and biotechnological potential. Moreover, the response of the bacteria to UVC radiation was evaluated. The comparison of the protein profile, analyzed through 2-D electrophoresis, of the control group versus the treatment group allowed the identification of 52 proteins that arose after stress induction. The obtained results enable the elaboration of a stress response pathway in C. violaceum generated by the UVC light. This pathway, that seems to be a general stress response, involves the expression of proteins related to cellular division, purine and pirimidine metabolism, heat chock or chaperones, energy supply, regulation of biofilm formation, transport, regulation of lytic cycle of bacteriophages, besides proteins that show undefined function. Despite the response present similarities with the classic SOS response of E. coli, we still cannot assert that C. violaceum shows a SOS-like response, mainly due to the absence of characterization of a LexA-like protein in this organism

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las quinolonas son uno de los tipos de antibióticos cuyas tasas de resistencia se han visto incrementadas en los últimos años. A nivel molecular, bloquean a las topoisomerasas tipo II generando cortes de doble cadena (double strand breaks, DSBs) en el ADN. Se ha propuesto que estos DSBs podrían tener un doble papel, como mediadores de su efecto bactericida y también como responsables de desencadenar los mecanismos de resistencia y tolerancia a las quinolonas. En el presente trabajo hemos estudiado la implicación de los mecanismos de reparación de DSBs en la sensibilidad a las quinolonas: reanudación de horquillas de replicación paradas dependiente de recombinación (RFR), inducción de la respuesta SOS, reparación por síntesis translesional (TLS) y escisión de nucleótidos (NER). Para ello, en los laboratorios de la Universidad Europea de Madrid, se han analizado las concentraciones mínimas inhibitorias (CMIs) de tres quinolonas diferentes en mutantes procedentes de varias colecciones de cultivos tipo de Escherichia coli. Mutantes en recA, recBC, priA y lexA mostraron una disminución significativa de la CMI a todas las quinolonas. No se observaron cambios significativos en estirpes mutantes en los mecanismos de reparación por TLS y NER. Estos datos indican que, en presencia de quinolonas, los mecanismos de RFR y la inducción de la respuesta SOS estarían implicados en la aparición de mecanismos de sensibilidad a quinolonas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial diarrhoeal diseases have significant influence on global human health, and are a leading cause of preventable death in the developing world. Enterohaemorrhagic Escherichia coli (EHEC), pathogenic strains of E. coli that carry potent toxins, have been associated with a high number of large-scale outbreaks caused by contaminated food and water sources. This pathotype produces diarrhoea and haemorrhagic colitis in infected humans, and in some patients leads to the development of haemolytic uremic syndrome (HUS), which can result in mortality and chronic kidney disease. A major obstacle to the treatment of EHEC infections is the increased risk of HUS development that is associated with antibiotic treatment, and rehydration and renal support are often the only options available. New treatments designed to prevent or clear E. coli infections and reduce symptoms of illness would therefore have large public health and economic impacts. The three main aims of this thesis were: to explore mouse models for pre-clinical evaluation in vivo of small compounds that inhibit a major EHEC colonisation factor, to assess the production and role of two proteins considered promising candidates for a broad-spectrum vaccine against pathogenic E. coli, and to investigate a novel compound that has recently been identified as a potential inhibitor of EHEC toxin production. As EHEC cannot be safely tested in humans due to the risk of HUS development, appropriate small animal models are required for in vivo testing of new drugs. A number of different mouse models have been developed to replicate different features of EHEC pathogenesis, several of which we investigated with a focus on colonisation mediated by the Type III Secretion System (T3SS), a needle-like structure that translocates bacterial proteins into host cells, resulting in a tight, intimate attachment between pathogen and host, aiding colonisation of the gastrointestinal tract. As E. coli models were found not to depend significantly on the T3SS for colonisation, the Citrobacter rodentium model, a natural mouse pathogen closely related to E. coli, was deemed the most suitable mouse model currently available for in vivo testing of T3SS-targeting compounds. Two bacterial proteins, EaeH (an outer membrane adhesin) and YghJ (a putative secreted lipoprotein), highly conserved surface-associated proteins recently identified as III protective antigens against E. coli infection of mice, were explored in order to determine their suitability as candidates for a human vaccine against pathogenic E. coli. We focused on the expression and function of these proteins in the EHEC O157:H7 EDL933 strain and the adherent-invasive E. coli (AIEC) LF82 strain. Although expression of EaeH by other E. coli pathotypes has recently been shown to be upregulated upon contact with host intestinal cells, no evidence of this upregulation could be demonstrated in our strains. Additionally, while YghJ was produced by the AIEC strain, it was not secreted by bacteria under conditions that other YghJ-expressing E. coli pathotypes do, despite the AIEC strain carrying all the genes required to encode the secretion system it is associated with. While our findings indicate that a vaccine that raises antibodies against EaeH and YghJ may have limited effect on the EHEC and AIEC strains we used, recent studies into these proteins in different E. coli pathogens have suggested they are still excellent candidates for a broadly effective vaccine against E. coli. Finally, we characterised a small lead compound, identified by high-throughput screening as a possible inhibitor of Shiga toxin expression. Shiga toxin production causes both the symptoms of illness and development of HUS, and thus reduction of toxin production, release, or binding to host receptors could therefore be an effective way to treat infections and decrease the risk of HUS. Inhibition of Shiga toxin production by this compound was confirmed, and was shown to be caused by an inhibitory effect on activation of the bacterial SOS response rather than on the Shiga toxin genes themselves. The bacterial target of this compound was identified as RecA, a major regulator of the SOS response, and we hypothesise that the compound binds covalently to its target, preventing oligomerisation of RecA into an activated filament. Altogether, the results presented here provide an improved understanding of these different approaches to combating EHEC infection, which will aid the development of safe and effective vaccines and anti-virulence treatments against EHEC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among abiotic stresses, high salinity stress is the most severe environmental stress. High salinity exerts its negative impact mainly by disrupting the ionic and osmotic equilibrium of the cell. In saline soils, high levels of sodium ions lead to plant growth inhibition and even death. Salt tolerance in plants is a multifarious phenomenon involving a variety of changes at molecular, organelle, cellular, tissue as well as whole plant level. In addition, salt tolerant plants show a range of adaptations not only in morphological or structural features but also in metabolic and physiological processes that enable them to survive under extreme saline environments. The main objectives of my dissertation were understanding the main physiological and biomolecular features of plant responses to salinity in different genotypes of horticultural crops that are belonging to different families Solanaceae (tomato) and Cucurbitaceae (melon) and Brassicaceae (cabbage and radish). Several aspects of crop responses to salinity have been addressed with the final aim of combining elements of functional stress response in plants by using several ways for the assessment of plant stress perception that ranging from destructive measurements (eg. leaf area, relative growth rate, leaf area index, and total plant fresh and dry weight), to physiological determinations (eg. stomatal conductance, leaf gas exchanges, water use efficiency, and leaf water relation), to the determination of metabolite accumulation in plant tissue (eg. Proline and protein) as well as evaluation the role of enzymatic antioxidant capacity assay in scavenging reactive oxygen species that have been generated under salinized condition, and finally assessing the gene induction and up-down regulation upon salinization (eg. SOS pathway).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is great interindividual variability in the response to GH therapy. Ascertaining genetic factors can improve the accuracy of growth response predictions. Suppressor of cytokine signaling (SOCS)-2 is an intracellular negative regulator of GH receptor (GHR) signaling. The objective of the study was to assess the influence of a SOCS2 polymorphism (rs3782415) and its interactive effect with GHR exon 3 and -202 A/C IGFBP3 (rs2854744) polymorphisms on adult height of patients treated with recombinant human GH (rhGH). Genotypes were correlated with adult height data of 65 Turner syndrome (TS) and 47 GH deficiency (GHD) patients treated with rhGH, by multiple linear regressions. Generalized multifactor dimensionality reduction was used to evaluate gene-gene interactions. Baseline clinical data were indistinguishable among patients with different genotypes. Adult height SD scores of patients with at least one SOCS2 single-nucleotide polymorphism rs3782415-C were 0.7 higher than those homozygous for the T allele (P < .001). SOCS2 (P = .003), GHR-exon 3 (P= .016) and -202 A/C IGFBP3 (P = .013) polymorphisms, together with clinical factors accounted for 58% of the variability in adult height and 82% of the total height SD score gain. Patients harboring any two negative genotypes in these three different loci (homozygosity for SOCS2 T allele; the GHR exon 3 full-length allele and/or the -202C-IGFBP3 allele) were more likely to achieve an adult height at the lower quartile (odds ratio of 13.3; 95% confidence interval of 3.2-54.2, P = .0001). The SOCS2 polymorphism (rs3782415) has an influence on the adult height of children with TS and GHD after long-term rhGH therapy. Polymorphisms located in GHR, IGFBP3, and SOCS2 loci have an influence on the growth outcomes of TS and GHD patients treated with rhGH. The use of these genetic markers could identify among rhGH-treated patients those who are genetically predisposed to have less favorable outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.