67 resultados para SOLENOPSIS INVICTA
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Abstract In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to become reproductives. Such a phenomenon occurs in the monogyne form of the fire ant, Solenopsis invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged nonreproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. To identify the molecular changes that occur in virgin queens as they perceive the loss of their mother queen and begin to compete for reproductive dominance, we collected virgin queens before the loss of their mother queen, 6 h after orphaning and 24 h after orphaning. Their RNA was extracted and hybridized against microarrays to examine the expression levels of approximately 10 000 genes. We identified 297 genes that were consistently differentially expressed after orphaning. These include genes that are putatively involved in the signalling and onset of reproductive development, as well as genes underlying major physiological changes in the young queens.
Resumo:
Dramatic improvements in DNA sequencing technologies have led to amore than 1,000-fold reduction in sequencing costs over the past five years.Genome-wide research approaches can thus now be applied beyond medicallyrelevant questions to examine the molecular-genetic basis of behavior,development and unique life histories in almost any organism. A first step foran emerging model organism is usually establishing a reference genomesequence. I offer insight gained from the fire ant genome project. First, I detailhow the project came to be and how sequencing, assembly and annotationstrategies were chosen. Subsequently, I describe some of the issues linked toworking with data from recently sequenced genomes. Finally, I discuss anapproach undertaken in a follow-up project based on the fire ant genomesequence.
A simple genetic basis for complex social behaviour mediates widespread gene expression differences.
Resumo:
A remarkable social polymorphism is controlled by a single Mendelian factor in the fire ant Solenopsis invicta. A genomic element marked by the gene Gp-9 determines whether workers tolerate one or many fertile queens in their colony. Gp-9 was recently shown to be part of a supergene with two nonrecombining variants, SB and Sb. SB/SB and SB/Sb queens differ in how they initiate new colonies, and in many physiological traits, for example odour and maturation rate. To understand how a single genetic element can affect all these traits, we used a microarray to compare gene expression patterns between SB/SB and SB/Sb queens of three different age classes: 1-day-old unmated queens, 11-day-old unmated queens and mated, fully reproductive queens collected from mature field colonies. The number of genes that were differentially expressed between SB/SB and SB/Sb queens of the same age class was smallest in 1-day-old queens, maximal in 11-day-old queens and intermediate in reproductive queens. Gene ontology analysis showed that SB/SB queens upregulate reproductive genes faster than SB/Sb queens. For all age classes, genes inside the supergene were overrepresented among the differentially expressed genes. Consistent with the hypothesized greater number of transposons in the Sb supergene, 13 transposon genes were upregulated in SB/Sb queens. Viral genes were also upregulated in SB/Sb mature queens, consistent with the known greater parasite load in colonies headed by SB/Sb queens compared with colonies headed by SB/SB queens. Eighteen differentially expressed genes between reproductive queens were involved in chemical signalling. Our results suggest that many genes in the supergene are involved in regulating social organization and queen phenotypes in fire ants.
Resumo:
The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form) or multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally involved in its expression. Rather, all three typical b-like residues appear to be necessary.
Resumo:
Complex adaptive polymorphisms are common in nature, but what mechanisms maintain the underlying favorable allelic combinations [1-4]? The convergent evolution of polymorphic social organization in two independent ant species provides a great opportunity to investigate how genomes evolved under parallel selection. Here, we demonstrate that a large, nonrecombining "social chromosome" is associated with social organization in the Alpine silver ant, Formica selysi. This social chromosome shares architectural characteristics with that of the fire ant Solenopsis invicta [2], but the two show no detectable similarity in gene content. The discovery of convergence at two levels-the phenotype and the genetic architecture associated with alternative social forms-points at general genetic mechanisms underlying transitions in social organization. More broadly, our findings are consistent with recent theoretical studies suggesting that suppression of recombination plays a key role in facilitating coordinated shifts in coadapted traits [5, 6].
Resumo:
To compare fire ant populations (Solenopsis) in North and South America, we surveyed 102 preselected roadside sites, half in the southeastern United States and half in the state of Mato Grosso do Sul, Brazil. Fire ants were considerably more abundant in the United States. They occurred at more sites (100 versus 70%), in higher densities (170 versus 30 mounds/ha), in larger mounds (27.0 versus 13.8 liters), and they constituted a larger fraction of the local ant community (97 versus 13% of occupied baits). These data are consistent with the hypothesis that North American populations of S. invicta have escaped natural biological control; however, cultural and climatic factors are also likely explanations.
Resumo:
In this study, we describe the cDNA cloning, sequencing, and 3-D structure of the allergen hyaluronidase from Polybia paulista venom (Pp-Hyal). Using a proteomic approach, the native form of Pp-Hyal was purified to homogeneity and used to produce a Pp-specific polyclonal antibody. The results revealed that Pp-Hyal can be classified as a glycosyl hydrolase and that the full-length Pp-Hyal cDNA (1315 bp; GI: 302201582) is similar (80-90%) to hyaluronidase from the venoms of endemic Northern wasp species. The isolated mature protein is comprised of 338 amino acids, with a theoretical pI of 8.77 and a molecular mass of 39,648.8 Da versus a pI of 8.13 and 43,277.0 Da indicated by MS. The Pp-Hyal 3D-structural model revealed a central core (α/β)7 barrel, two sulfide bonds (Cys 19-308 and Cys 185-197), and three putative glycosylation sites (Asn79, Asn187, and Asn325), two of which are also found in the rVes v 2 protein. Based on the model, residues Ser299, Asp107, and Glu109 interact with the substrate and potential epitopes (five conformational and seven linear) located at surface-exposed regions of the structure. Purified native Pp-Hyal showed high similarity (97%) with hyaluronidase from Polistes annularis venom (Q9U6V9). Immunoblotting analysis confirmed the specificity of the Pp-Hyal-specific antibody as it recognized the Pp-Hyal protein in both the purified fraction and P. paulista crude venom. No reaction was observed with the venoms of Apis mellifera, Solenopsis invicta, Agelaia pallipes pallipes, and Polistes lanio lanio, with the exception of immune cross-reactivity with venoms of the genus Polybia (sericea and ignobilis). Our results demonstrate cross-reactivity only between wasp venoms from the genus Polybia. The absence of cross-reactivity between the venoms of wasps and bees observed here is important because it allows identification of the insect responsible for sensitization, or at least of the phylogenetically closest insect, in order to facilitate effective immunotherapy in allergic patients. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A central issue in evolutionary biology is the extent to which complex social organization is under genetic control. We have found that a single genomic element marked by the protein-encoding gene Gp-9 is responsible for the existence of two distinct forms of social organization in the fire ant Solenopsis invicta. This genetic factor influences the reproductive phenotypes and behavioral strategies of queens and determines whether workers tolerate a single fertile queen or multiple queens per colony. Furthermore, this factor affects worker tolerance of queens with alternate genotypes, thus explaining the dramatic differences in Gp-9 allele frequencies observed between the two social forms in the wild. These findings reveal how a single genetic factor can have major effects on complex social behavior and influence the nature of social organization.
Resumo:
The inadvertent introduction of the fire ant Solenopsis invicta to the United States from South America provides the opportunity to study recent social evolution by comparing social organization in native and introduced populations. We report that several important elements of social organization in multiple-queen nests differ consistently and dramatically between ants in Argentina and the United States. Colonies in Argentina contain relatively few queens and they are close relatives, whereas colonies in the United States contain high numbers of unrelated queens. A corollary of these differences is that workers in the native populations are significantly related to the new queens that they rear in contrast to the zero relatedness between workers and new queens in the introduced populations. The observed differences in queen number and relatedness signal a shift in the breeding biology of the introduced ants that is predicted on the basis of the high population densities in the new range. An additional difference in social organization that we observed, greater proportions of permanently unmated queens in introduced than in native populations, is predicted from the loss of alleles at the sex-determining locus and consequent skewing of operational sex ratios in the colonizing ants. Thus, significant recent social evolution in fire ants is consistent with theoretical expectations based on the altered ecology and population genetics of the introduced populations.
Resumo:
The discovery of the Red Imported Fire ants (Solenopsis invicta) in Brisbane on 22 February 2001 sent shock waves through urban and rural communities alike. This article is an attempt to address the often repeated question ‘What will become of Australia's unique fauna if they spread along Australia's eastern seaboard?
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC