931 resultados para SOL-GEL REACTION
Resumo:
We have pointed out that zinc based particles obtained from ethanolic solution of a zinc acetate derivative (zinc oxy-acetate, Zn4O(Ac)(6)) are a mixture of nanometer sized ZnO, zinc oxy-acetate, and zinc hydroxide double salt (Zn-HDS). The knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, and the evolution of Zn species in reaction medium was monitored in situ during 14 h by simultaneous measurements of UV-vis absorption and extended X-ray absorption fine structures (EXAFS) spectra. This spectroscopic monitoring was initialized just after the addition of an ethanolic lithium hydroxide solution ([LiOH]/[Zn] = 0. 1) to the reaction medium kept under controlled temperature (40 degrees C). This study points out the first direct evidence of the reaction between ZnO nanoparticles and unreacted zinc oxy-acetate to form a Zn-HDS phase. The dissolution of ZnO and the reprecipitation of Zn-HDS are induced by the gradual release of water mainly produced by ethanol esterification well evidenced by gas chromatography coupled to mass spectroscopy and FT-IR measurements.
Resumo:
Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Here we describe the preparation of iron(II) porphyrinosilica in a simple one-pot reaction, where the -SO2Cl groups present in the phenyl rings of FeTDCSPP+ react with 3-aminopropyltriethoxysilane and tetraethoxysilane in the presence of a nitrogenous base, leading to iron(III) porphyrinosilica. In this same procedure, molecular cavities containing regularly spaced functional groups are created through the molecular imprinting technique, in which the nitrogenous base coordinated to the iron(III) porphyrin serves as a template. The removal of such template in a Soxhlet extractor leads to a cavity with the same shape and size as the nitrogenous base, enabling the construction of shape-selective catalysts mimicking cytochrome P-450. Five different imprinting molecules have been used: imidazole, 1-methylimidazole, 2-methylbenzimidazole, 4-phenylimidazole and miconazole and ultra-violet/visible absorption spectroscopy, thermogravimetric analysis and electron paramagnetic resonance carried out. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The optimized conditions for the preparation of a new manganese porphyrinosilica-template material are reported. The manganese porphyrinosilica-template was prepared by the sol-gel process, by the reaction of -SO2Cl groups present in the phenyl rings of MnTDC(SO2Cl)PPCl with 3-aminopropyltriethoxysilane. The reaction produces a precursor porphyrinopropylsilyl species, which were then polymerized with tetraethoxysilane. The presence of manganese porphyrin on xerogel is confirmed by ultraviolet visible absorption spectroscopy and thermogravimetric analysis (TGA). The prepared materials have surface areas between 19 and 674 m2 g-1. Electron spectroscopy imaging of the materials show that manganese distribution in the xerogel is uniform. Both manganese(III) porphyrinosilica-template and a similar iron(III) porphyrinosilica-template can catalyze the epoxidation of cyclooctene using iodozylbenzene as oxygen donor. The metalloporphyrinosilica-template presents catalytic activity similar to that of metaloporphyrin in solution. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
This work of thesis involves various aspects of crystal engineering. Chapter 1 focuses on crystals containing crown ether complexes. Aspects such as the possibility of preparing these materials by non-solution methods, i.e. by direct reaction of the solid components, thermal behavior and also isomorphism and interconversion between hydrates are taken into account. In chapter 2 a study is presented aimed to understanding the relationship between hydrogen bonding capability and shape of the building blocks chosen to construct crystals. The focus is on the control exerted by shape on the organization of sandwich cations such as cobalticinium, decamethylcobalticinium and bisbenzenchromium(I) and on the aggregation of monoanions all containing carboxylic and carboxylate groups, into 0-D, 1-D, 2-D and 3-D networks. Reactions conducted in multi-component molecular assemblies or co-crystals have been recognized as a way to control reactivity in the solid state. The [2+2] photodimerization of olefins is a successful demonstration of how templated solid state synthesis can efficiently synthesize unique materials with remarkable stereoselectivity and under environment-friendly conditions. A demonstration of this synthetic strategy is given in chapter 3. The combination of various types of intermolecular linkages, leading to formation of high order aggregation and crystalline materials or to a random aggregation resulting in an amorphous precipitate, may not go to completeness. In such rare cases an aggregation process intermediate between crystalline and amorphous materials is observed, resulting in the formation of a gel, i.e. a viscoelastic solid-like or liquid-like material. In chapter 4 design of new Low Molecular Weight Gelators is presented. Aspects such as the relationships between molecular structure, crystal packing and gelation properties and the application of this kind of gels as a medium for crystal growth of organic molecules, such as APIs, are also discussed.
Resumo:
Recent work has highlighted the potential of sol-gel-derived calcium silicate glasses for the regeneration or replacement of damaged bone tissue. The work presented herein provides new insight into the processing of bioactive calcia-silica sol-gel foams, and the reaction mechanisms associated with them when immersed in vitro in a simulated body fluid (SBF). Small-angle X-ray scattering and wide-angle X-ray scattering (diffraction) have been used to study the stabilization of these foams via heat treatment, with analogous in situ time-resolved data being gathered for a foam immersed in SBF. During thermal processing, pore sizes have been identified in the range of 16.5-62.0 nm and are only present once foams have been heated to 400 degrees C and above. Calcium nitrate crystallites were present until foams were heated to 600 degrees C; the crystallite size varied from 75 to 145 nm and increased in size with heat treatment up to 300 degrees C, then decreased in size down to 95 rim at 400 degrees C. The in situ time-resolved data show that the average pore diameter decreases as a function of immersion time in SBF, as calcium phosphates grow on the glass surfaces. Over the same time, Bragg peaks indicative of tricalcium phosphate were evident after only 1-h immersion time, and later, hydroxycarbonate apatite was also seen. The hydroxycarbonate apatite appears to have preferred orientation in the (h,k,0) direction.
Resumo:
Sol-gel-synthesized bioactive glasses may be formed via a hydrolysis condensation reaction, silica being introduced in the form of tetraethyl orthosilicate (TEOS), and calcium is typically added in the form of calcium nitrate. The synthesis reaction proceeds in an aqueous environment; the resultant gel is dried, before stabilization by heat treatment. These materials, being amorphous, are complex at the level of their atomic-scale structure, but their bulk properties may only be properly understood on the basis of that structural insight. Thus, a full understanding of their structure-property relationship may only be achieved through the application of a coherent suite of leading-edge experimental probes, coupled with the cogent use of advanced computer simulation methods. Using as an exemplar a calcia-silica sol-gel glass of the kind developed by Larry Hench, in the memory of whom this paper is dedicated, we illustrate the successful use of high-energy X-ray and neutron scattering (diffraction) methods, magic-angle spinning solid-state NMR, and molecular dynamics simulation as components to a powerful methodology for the study of amorphous materials.
Resumo:
Usually, the concepts of the Sol-Gel technique are not applied in experimental chemistry courses. This work presents a feasible experiment for chemistry instruction, which involves the synthesis of luminescent materials - Zn2SiO4, with and without Mn2+ as a dopant - by the Sol-Gel technique. The obtained materials were analyzed by scanning electron microscopy, X-Ray diffraction, IR spectroscopy and luminescence measures by UV-vis spectroscopy. The results allow the students to confirm the luminescent properties of the zinc orthosilicate luminophores as well as the structural features expected from literature data.
Resumo:
Hybrid matrices of polysiloxane-polyvinyl alcohol (POS-PVA) were prepared by sol-gel technique using different concentrations of the organic component (polyvinyl alcohol, PVA) in the synthesis medium. The goal was to prepare carriers for immobilizing enzyme by taking into consideration properties as hardness, mean pore diameter, specific surface area and pore size distribution. The matrices were activated with sodium metaperiodate to render functional groups for binding the lipase from Candida rugosa, used here as a study model. Results showed that low proportion of PVA gave POS-PVA with low surface area and pore volume, although with higher hardness. The chemical activation decreased the pore volume and increased the pore size with a decrease on the surface area of about 60-75%. The matrices for enzyme immobilization were chosen considering the best combination of high surface area and hardness. Thus, the POS-PVA prepared with 5.56 x 10(-5) M of PVA with a surface area of 123 m(2)/g and hardness of 71 HV (50 gf 30 s) was shown to be suitable to immobilize the lipase, with an immobilization yield of about 40%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Different gelation times (4, 18, 24 and 48 h) were used for the preparation of silica sol-gel supports and encapsulated Candida rugosa lipase using tetraethoxysilane (TEOS) as precursor. The hydrophobic matrices and immobilized lipases produced were characterized with regard to pore volume and size by nitrogen adsorption (BJH method), weight loss upon heating (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), chemical composition (FTIR) and percentage of hydrolysis (POH%) of olive oil. These structural parameters were found to change with the gelation time, but no direct relation was found between the percentage of oil hydrolysis (POH%) and the gelation time. The best combination of high thermal stability and high POH% (99.5%) occurred for encapsulated lipase produced with 24 h gelation time. (C) 2007 Elsevier B.V. All rights reserved.