146 resultados para SNO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete I-V characteristics of SnO(2)-based varistors, particularly of the Pianaro system SCNCr consisting in 98.9%SnO(2)+1%CoO+0.05%Nb(2)O(5)+0.05%Cr(2)O(3), all in mol%, have been seldom reported in the literature. A comparative study at low and high currents of the nonohmic behavior of SCNCr- and ZnO-based varistors (modified Matsuoka system) is proposed in this work. The SCNCr system showed higher nonlinearity coefficients in the whole range of measured current. The electrical breakdown field (E(b)) was twice as high for the SCNCr system (5400 V/cm) than for the ZnO varistor (2600 V/cm) due to a smaller average grain size of the former (4.5 mu m) with respect to the latter (8.5 mu m). Nevertheless, we consider that another important factor responsible for the high E(b) in the SCNCr system is the great number of electrically active interfaces (85%) as determined with electrostatic force microscopy (EFM). It was also established that the SCNCr system might be produced in disks of smaller dimensions than that of commercial ZnO-based product, with a 5.0 cm(-1) minimal area-volume (A/V) ratio. The SCNCr reached the saturation current in a short time because of the high resistivity of the grains, which is five times higher than that of the grains in ZnO-based varistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline materials of SnO(2) doped with ZnO, WO(3), CoO, Nb(2)O(5), and MoO(3). were synthesized by solid state reaction. X-ray powder diffraction data were collected with Cu K(alpha) radiation from a Rigaku-Rint 2000 rotating anode source. The structural and profile parameters were refined by the Rietveld method using GSAS [2]. The obtained residual parameters are R(wp) = 11,93% and R(Bragg) = 4,19%. The refined profile parameters indicate no anisotropic crystallite microstrain. The refinement results and Fourier differences calculations indicate that the dopants do not occupy interstitial sites in the crystal structure of SnO(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the growth of SnO nanobelts and dendrites by a carbothermal reduction process. The materials were synthesized in a sealed tube furnace at 1210 degrees C and at 1260 degrees C for 2 h. in a dynamic nitrogen atmosphere of 40 seem. After synthesis, gray-black materials were collected downstream in the tube and the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The results showed that the gray-black materials were composed of nanobelts, which grew in the [110] direction of the orthorhombic structure of SnO. Some of the belts also presented dendritic growth. The dendrites grew in the (110) planes of the SnO structure, and no defects were observed at the junction between the nanobelts and the dendrites. A self-catalytic vapor-liquid-solid (VLS) process was proposed to explain the growth of the SnO nanobelts and dendrites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present photoluminescence and decay of photo excited conductivity data for sol-gel SnO(2) thin films doped with rare earth ions Eu(3+) and Er(3+), a material with nanoscopic crystallites. Photoluminescence spectra are obtained under excitation with several monochromatic light sources, such as Kr(+) and Ar(+) lasers, Xe lamp plus a selective monochromator with UV grating, and the fourth harmonic of a Nd: YAG laser (4.65eV), which assures band-to-band transition and energy transfer to the ion located at matrix sites, substitutional to Sn(4+). The luminescence structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at grain boundary layer, where it is placed in asymmetric sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference between capture energy and grain boundary barrier is not so evident, even though the luminescence spectra are rather distinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with GaAs layers, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, combining the emission from the rare-earth doped transparent oxide (Eu3+-doped SnO2 presents very efficient red emission) with a high mobility semiconductor. The advantage of this structure is the possibility of separation of the rare-earth emission centers from the electron scattering, leading to a strongly indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films, and the monochromatic light irradiation (266 nm) at low temperature of the heterojunction GaAs/SnO2:Eu leads to intense conductivity increase. Scanning electron microscopy (SEM) of the heterojunction cross section shows high adherence and good morphological quality of the interfaces substrate/SnO2 and SnO2/GaAs, even though the atomic force microscopy (AFM) image of the GaAs surface shows disordered particles, which increases with sample thickness. On the other hand, the good morphology of the SnO2:Eu surface, shown by AFM, assures the good electrical performance of the heterojunction. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels at the semiconductors interface, which may exhibit two-dimensional electron gas (2DEG) behavior. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystalline SnO micro-disks, synthesized by a carbothermal reduction process, exhibited a nearly 1000-fold increase in resistance upon exposure to 100 ppm of NO2 without addition of catalysts or dopants nor the existence of nano-sized dimensions. Moreover, the SnO displayed a greater than 100-fold selectivity to NO2 over potential interferents including CO, H2 and CH4. The high sensor signal and exceptional selectivity for this novel sensor material are attributed to the existence of a high density of active lone pair electrons on the exposed (0 0 1) planes of the single crystalline SnO disks. This, thereby, identifies new means, not utilizing nano-dimensions, to achieve high gas sensitivity. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)