259 resultados para SMT - Solvers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O avanço tecnológico no projeto de microprocessadores, nos recentes anos, tem seguido duas tendências principais. A primeira tenta aumentar a freqüência do relógio dos mesmos usando componentes digitais e técnicas VLSI mais eficientes. A segunda tenta explorar paralelismo no nível de instrução através da reorganização dos seus componentes internos. Dentro desta segunda abordagem estão as arquiteturas multi-tarefas simultâneas, que são capazes de extrair o paralelismo existente entre e dentro de diferentes tarefas das aplicações, executando instruções de vários fluxos simultaneamente e maximizando assim a utilização do hardware. Apesar do alto custo da implementação em hardware, acredita-se no potencial destas arquiteturas para o futuro próximo, pois é previsto que em breve haverá a disponibilidade de bilhões de transistores para o desenvolvimento de circuitos integrados. Assim, a questão principal a ser encarada talvez seja: como prover instruções paralelas para uma arquitetura deste tipo? Sabe-se que a maioria das aplicações é seqüencial pois os problemas nem sempre possuem uma solução paralela e quando a solução existe os programadores nem sempre têm habilidade para ver a solução paralela. Pensando nestas questões a arquitetura SEMPRE foi projetada. Esta arquitetura executa múltiplos processos, ao invés de múltiplas tarefas, aproveitando assim o paralelismo existente entre diferentes aplicações. Este paralelismo é mais expressivo do que aquele que existe entre tarefas dentro de uma mesma aplicação devido a não existência de sincronismo ou comunicação entre elas. Portanto, a arquitetura SEMPRE aproveita a grande quantidade de processos existentes nas estações de trabalho compartilhadas e servidores de rede. Além disso, esta arquitetura provê suporte de hardware para o escalonamento de processos e instruções especiais para o sistema operacional gerenciar processos com mínimo esforço. Assim, os tempos perdidos com o escalonamento de processos e as trocas de contextos são insignificantes nesta arquitetura, provendo ainda maior desempenho durante a execução das aplicações. Outra característica inovadora desta arquitetura é a existência de um mecanismo de prébusca de processos que, trabalhando em cooperação com o escalonamento de processos, permite reduzir faltas na cache de instruções. Também, devido a essa rápida troca de contexto, a arquitetura permite a definição de uma fatia de tempo (fatia de tempo) menor do que aquela praticada pelo sistema operacional, provendo maior dinâmica na execução das aplicações. A arquitetura SEMPRE foi analisada e avaliada usando modelagem analítica e simulação dirigida por execução de programas do SPEC95. A modelagem mostrou que o escalonamento por hardware reduz os efeitos colaterais causados pela presença de processos na cache de instruções e a simulação comprovou que as diferentes características desta arquitetura podem, juntas, prover ganho de desempenho razoável sobre outras arquiteturas multi-tarefas simultâneas equivalentes, com um pequeno acréscimo de hardware, melhor aproveitando as fatias de tempo atribuídas aos processos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel lavoro di tesi qui presentato si indaga l'applicazione di tecniche di apprendimento mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint solver). Un constraint solver è un programma che dato in input un problema di vincoli, elabora una soluzione mediante l'utilizzo di svariate tecniche. I problemi di vincoli sono altamente presenti nella vita reale. Esempi come l'organizzazione dei viaggi dei treni oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi di vincoli. Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori appartenenti ad uno specico dominio ed un insieme di vincoli che mettono in relazione variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am- biti come quelli economici, prevede la combinazione di più solver i quali assieme possono generare risultati migliori di un approccio a singolo solver. In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio di constraint solver con tecniche di machine learning. Il machine learning è un campo di intelligenza articiale che si pone l'obiettivo di immettere nelle macchine una sorta di `intelligenza'. Un esempio applicativo potrebbe essere quello di valutare i casi passati di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a livello cognitivo umano. Nello specico, vogliamo ragionare in termini di classicazione. Una classicazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un valore discreto in output, come vero o falso se una mail è classicata come spam o meno. La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio di constraint solver sviluppato presso la University College of Cork (UCC). Di tale algoritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altresì dette features. Creeremo quindi una serie di classicatori basati sullo specifico comportamento dei solver. La combinazione di tali classicatori con l'approccio a portfolio sara nalizzata allo scopo di valutare che le feature di CPHydra siano buone e che i classicatori basati su tali feature siano affidabili. Per giusticare il primo risultato, eettueremo un confronto con uno dei migliori portfolio allo stato dell'arte, SATzilla. Una volta stabilita la bontà delle features utilizzate per le classicazioni, andremo a risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole costruite con classicatori precedentemente introdotti. Prima agiremo su uno scenario ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In questi esperimenti andremo a vericare che, le prestazioni ottenute tramite l'applicazione delle regole create appositamente sui classicatori, abbiano risultati migliori rispetto ad un'esecuzione limitata all'utilizzo del migliore solver del portfolio. I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso University College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientico alla International Joint Conference of Articial Intelligence (IJCAI) 2011. Al momento della consegna della tesi non siamo ancora stati informati dell'accettazione di tale articolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato risulta interessante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a solution to an NP-complete problem, namely the "3-colorability problem", based on a network of polarized processors. Our solution is uniform and time efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"NSF - OCA - GJ-36936 - 000006."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed. © 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removing noise from piecewise constant (PWC) signals is a challenging signal processing problem arising in many practical contexts. For example, in exploration geosciences, noisy drill hole records need to be separated into stratigraphic zones, and in biophysics, jumps between molecular dwell states have to be extracted from noisy fluorescence microscopy signals. Many PWC denoising methods exist, including total variation regularization, mean shift clustering, stepwise jump placement, running medians, convex clustering shrinkage and bilateral filtering; conventional linear signal processing methods are fundamentally unsuited. This paper (part I, the first of two) shows that most of these methods are associated with a special case of a generalized functional, minimized to achieve PWC denoising. The minimizer can be obtained by diverse solver algorithms, including stepwise jump placement, convex programming, finite differences, iterated running medians, least angle regression, regularization path following and coordinate descent. In the second paper, part II, we introduce novel PWC denoising methods, and comparisons between these methods performed on synthetic and real signals, showing that the new understanding of the problem gained in part I leads to new methods that have a useful role to play.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removing noise from signals which are piecewise constant (PWC) is a challenging signal processing problem that arises in many practical scientific and engineering contexts. In the first paper (part I) of this series of two, we presented background theory building on results from the image processing community to show that the majority of these algorithms, and more proposed in the wider literature, are each associated with a special case of a generalized functional, that, when minimized, solves the PWC denoising problem. It shows how the minimizer can be obtained by a range of computational solver algorithms. In this second paper (part II), using this understanding developed in part I, we introduce several novel PWC denoising methods, which, for example, combine the global behaviour of mean shift clustering with the local smoothing of total variation diffusion, and show example solver algorithms for these new methods. Comparisons between these methods are performed on synthetic and real signals, revealing that our new methods have a useful role to play. Finally, overlaps between the generalized methods of these two papers and others such as wavelet shrinkage, hidden Markov models, and piecewise smooth filtering are touched on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Kumulative Habilitation, 2016