965 resultados para SMALL HYDROPHOBIC PROTEIN


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report an optical sensor based on localized surface plasmon resonance (LSPR) to study small-molecule protein interaction combining high sensitivity refractive index sensing for quantitative binding information and subsequent conformation-sensitive plasmon-activated circular dichroism spectroscopy. The interaction of α-amylase and a small-size molecule (PGG, pentagalloyl glucose) was log concentration-dependent from 0.5 to 154 μM. In situ tests were additionally successfully applied to the analysis of real wine samples. These studies demonstrate that LSPR sensors to monitor small molecule–protein interactions in real time and in situ, which is a great advance within technological platforms for drug discovery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation focuses on the study of frataxin, a small mitochondrial protein whose deficiency is associated with the neurodegenerative disease Friedreich's ataxia (FRDA). Aiming at a better understanding of frataxin conformational and functional properties, two lines of research were followed: first, the effect of FRDA-related mutations in human frataxin (FXN) were studied and the role of oxidative stress related modification addressed; second, yeast frataxin (Yfh1) orthologue was used to explore the conformational and functional properties of the protein.(...)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regulates cell growth whereas the Rho subfamily (RhoA, Rac1, and Cdc42) regulates cell morphology. Thus, the involvement of small G proteins in hypertrophy has become an area of significant interest. Hearts from transgenic mice expressing activated Ras develop features consistent with hypertrophy, whereas mice overexpressing RhoA develop lethal heart failure. In isolated neonatal rat cardiac myocytes, transfection or infection with activated Ras, RhoA, or Rac1 induces many of the features of hypertrophy. We discuss the mechanisms of activation of the small G proteins and the downstream signaling pathways involved. The latter may include protein kinases, particularly the mitogen-activated or Rho-activated protein kinases. We conclude that although there is significant evidence implicating Ras, RhoA, and Rac1 in hypertrophy, the mechanisms are not fully understood.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of the present work was to identify and characterize gene sequences that are preferentially expressed in CML in an effort to better understand the molecular basis of the disease. As high abundance mRNAs generally encode proteins that are phenotypically characteristic of cells, positive-negative screening of a CML cDNA library was used to identify cDNA clones containing sequences preferentially transcribed in CML. One cDNA sequence that fulfilled this criterion, C-A3, has been characterized in some detail. It represents a small mRNA ((TURN)496 nucleotides) that is highly abundant ((TURN)2% of the poly(A('+))RNA) in cells from the chronic phase of CML. In situ hybridization to whole cells indicates the principal leukocytes that express C-A3 sequences are eosinophils, basophils and immature myelocytes. Surprisingly, CML patients with high numbers of myeloblasts do not have an abundance of C-A3 transcripts, although transcript levels remain elevated in patients with lymphoblasts. In AML, high transcript levels are only found sporadically and occasionally different sized transcripts can be detected. Sequences from the 3' end of the C-A3 message are present in 2-5 copies per haploid genome. The 3' end of C-A3 localizes to bands 8q21.1 and 8q23 by in situ chromosomal hybridization. This is a region that is often involved in hematopoietic malignancies. Restriction digests of human genomic DNA show a correlation between the presence of a 2.3 kb Hind III fragment and certain types of leukemia. All of the leukemic DNAs tested had this fragment. In comparison, only one of five normal DNAs had a band this size. Analysis of the nucleotide sequence indicates that C-A3 probably encodes a small, hydrophobic peptide which may be part of a larger protein. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of organisms from all three domains of life. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs.1,2 For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. We show that some of these ribosome-bound small ncRNAs are capable of fine tuning protein synthesis in vitro and in vivo. Our data therefore reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life and suggest the existence of a so far largely unexplored mechanism of translation regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules represent major contributors to regulatory networks in controlling gene expression in a highly efficient manner. All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. To address the question, whether small ncRNA regulators exist that are capable of modulating the rate of protein production by directly interacting with the ribosome, we have analyzed the small ncRNA interactomes of ribosomes Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs in various model organisms (1,2). For a subset of these ncRNA candidates we have gathered experimental evidence that they associate with ribosomes in a stress-dependent manner and are capable of regulating gene expression by fine-tuning the rate of protein biosynthesis (3,4). Many of the investigated ribosome-bound small ncRNA appear to be processing products from larger functional RNAs, such as tRNAs (2,3) or mRNAs (3). Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. Our data reveal the ribosome as a target for small regulatory ncRNAs and demonstrate the existence of a yet unknown mechanism of translation regulation. Ribosome-associated ncRNAs (rancRNAs) are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules (5). Future work on the small ncRNA interactomes of ribosomes in a variety of model systems will allow deeper insight into the conservation and functional repertoire of this emerging class of regulatory ncRNA molecules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Contraction of cardiac muscle is regulated through the Ca2+ dependent protein-protein interactions of the troponin complex (Tn). The critical role cardiac troponin C (cTnC) plays as the Ca2+ receptor in this complex makes it an attractive target for positive inotropic compounds. In this study, the ten Met methyl groups in cTnC, [98% 13C ϵ]-Met cTnC, are used as structural markers to monitor conformational changes in cTnC and identify sites of interaction between cTnC and cardiac troponin I (cTnI) responsible for the Ca2+ dependent interactions. In addition the structural consequences that a number of Ca2+-sensitizing compounds have on free cTnC and the cTnC·cTnI complex were characterized. Using heteronuclear NMR experiments and monitoring chemical shift changes in the ten Met methyl 1H-13C correlations in 3Ca2+ cTnC when bound to cTnI revealed an anti-parallel arrangement for the two proteins such that the N-domain of cTnI interacts with the C-domain of cTnC. The large chemical shifts in Mets-81, -120, and -157 identified points of contact between the proteins that include the C-domain hydrophobic surface in cTnC and the A, B, and D helical interface located in the regulatory N-domain of cTnC. TnI association [cTnI(33–80), cTnI(86–211), or cTnI(33–211)] was found also to dramatically reduce flexibility in the D/E central linker of cTnC as monitored by line broadening in the Met 1H- 13C correlations of cTnC induced by a nitroxide spin label, MTSSL, covalently attached to cTnC at Cys 84. TnI association resulted in an extended cTnC that is unlike the compact structure observed for free cTnC. The Met 1H-13C correlations also allowed the binding characteristics of bepridil, TFP, levosimendan, and EMD 57033 to the apo, 2Ca2+, and Ca2+ saturated forms of cTnC to be determined. In addition, the location of drug binding on the 3Ca2+cTnC·cTnI complex was identified for bepridil and TFP. Use of a novel spin-labeled phenothiazine, and detection of isotope filtered NOEs, allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain, and on two hydrophobic surfaces on N-regulatory domain in free 3Ca2+ cTnC. In contrast, only one N-domain drug binding site exists in 3Ca2+ cTnC·cTnI complex. The methyl groups of Met 45, 60 and 80, which are grouped in a hydrophobic patch near site II in cTnC, showed the greatest change upon titration with bepridil or TFP, suggesting that this is a critical site of drug binding in both free cTnC and when associated with cTnI. The strongest NOEs were seen for Met-60 and -80, which are located on helices C and D, respectively, of Ca2+ binding site II. These results support the conclusion that the small hydrophobic patch which includes Met-45, -60, and -80 constitutes a drug binding site, and that binding drugs to this site will lead to an increase in Ca2+ binding affinity of site II while preserving maximal cTnC activity. Thus, the subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a computational study of protein-ligand complexes formed between five nsLTPs and seven lipids bound in two different ways in every receptor protein. After optimizing geometries inmolecular dynamics calculations, we computed Poisson- Boltzmann electrostatic potentials, solvation energies, properties of the protein-ligand interfaces, and estimates of binding free energies of the resulting complexes. Our results provide the first quantitative information on the ligand abilities of nsLTPs, shed new light into protein-lipid interactions, and reveal new features which supplement commonly held assumptions on their lack of binding specificity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the intricate maturation process of [NiFe]-hydrogenases, the Fe(CN)2CO cofactor is first assembled in a HypCD complex with iron coordinated by cysteines from both proteins and CO is added after ligation of cyanides. The small accessory protein HypC is known to play a role in delivering the cofactor needed for assembling the hydrogenase active site. However, the chemical nature of the Fe(CN)2CO moiety and the stability of the cofactor–HypC complex are open questions. In this work, we address geometries, properties, and the nature of bonding of all chemical species involved in formation and binding of the cofactor by means of quantum calculations. We also study the influence of environmental effects and binding to cysteines on vibrational frequencies of stretching modes of CO and CN used to detect the presence of Fe(CN)2CO. Carbon monoxide is found to be much more sensitive to sulfur binding and the polarity of the medium than cyanides. The stability of the HypC–cofactor complex is analyzed by means of molecular dynamics simulation of cofactor-free and cofactor-bound forms of HypC. The results show that HypC is stable enough to carry the cofactor, but since its binding cysteine is located at the N-terminal unstructured tail, it presents large motions in solution, which suggests the need for a guiding interaction to achieve delivery of the cofactor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The yeast Sec1p protein functions in the docking of secretory transport vesicles to the plasma membrane. We previously have cloned two yeast genes encoding syntaxins, SSO1 and SSO2, as suppressors of the temperature-sensitive sec1–1 mutation. We now describe a third suppressor of sec1–1, which we call MSO1. Unlike SSO1 and SSO2, MSO1 is specific for sec1 and does not suppress mutations in any other SEC genes. MSO1 encodes a small hydrophilic protein that is enriched in a microsomal membrane fraction. Cells that lack MSO1 are viable, but they accumulate secretory vesicles in the bud, indicating that the terminal step in secretion is partially impaired. Moreover, loss of MSO1 shows synthetic lethality with mutations in SEC1, SEC2, and SEC4, and other synthetic phenotypes with mutations in several other late-acting SEC genes. We further found that Mso1p interacts with Sec1p both in vitro and in the two-hybrid system. These findings suggest that Mso1p is a component of the secretory vesicle docking complex whose function is closely associated with that of Sec1p.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The small all-β protein tendamistat folds and unfolds with two-state kinetics. We determined the volume changes associated with the folding process by performing kinetic and equilibrium measurements at variable pressure between 0.1 and 100 MPa (1 to 1,000 bar). GdmCl-induced equilibrium unfolding transitions reveal that the volume of the native state is increased by 41.4 ± 2.0 cm3/mol relative to the unfolded state. This value is virtually independent of denaturant concentration. The use of a high-pressure stopped-flow instrument enabled us to measure the activation volumes for the refolding (ΔVf0‡) and unfolding reaction (ΔVu0‡) over a broad range of GdmCl concentrations. The volume of the transition state is 60% native-like (ΔVf0‡ = 25.0 ± 1.2 cm3/mol) in the absence of denaturant, indicating partial solvent accessibility of the core residues. The volume of the transition state increases linearly with denaturant concentration and exceeds the volume of the native state above 6 M GdmCl. This result argues for a largely desolvated transition state with packing deficiencies at high denaturant concentrations and shows that the structure of the transition state depends strongly on the experimental conditions.