897 resultados para SLEEP DEPRIVATION
Resumo:
The objective of the present study was to determine whether sleep deprivation (SD) would promote changes in lymphocyte numbers in a type 1 diabetes model (non-obese diabetic, NOD, mouse strain) and to determine whether SD would affect female and male NOD compared to Swiss mice. The number of lymphocytes in peripheral blood after 24 and 96 h of SD (by multiple platform method) or equivalent period of time in home-cage controls was examined prior to the onset of diabetes. SD for 96 h significantly reduced lymphocytes in male Swiss mice compared to control (8.6 ± 2.1 vs 4.1 ± 0.7 10³/µL; P < 0.02). In male NOD animals, 24- and 96-h SD caused a significant decrease of lymphocytes compared to control (4.4 ± 0.3 vs 1.6 ± 0.5; P < 0.001 and 4.4 ± 0.3 vs 0.9 ± 0.1 10³/µL; P < 0.00001, respectively). Both 24- and 96-h SD induced a reduction in the number of lymphocytes in female Swiss (7.5 ± 0.5 vs 4.5 ± 0.5, 4.4 ± 0.6 10³/µL; P < 0.001, respectively) and NOD mice (4 ± 0.6 vs 1.8 ± 0.2, 1.2 ± 0.4 10³/µL; P < 0.01, respectively) compared to the respective controls. Loss of sleep induced lymphopenia in peripheral blood in both genders and strains used. Since many cases of autoimmunity present reduced numbers of lymphocytes and, in this study, it was more evident in the NOD strain, our results suggest that SD should be considered a risk factor in the onset of autoimmune disorders.
Resumo:
Sleep loss is both common and critically relevant to our society and might lead to the abuse of psychostimulants such as amphetamines, cocaine and modafinil. Since psychoactive substance abuse often occurs within a scenario of sleep deficit, the purpose of this investigation was to compare the sleep patterns of rats challenged with cocaine (7 mg/kg, ip), methamphetamine (7 mg/kg, ip), or modafinil (100 mg/kg, ip) subsequent to paradoxical sleep deprivation (PSD) for 96 h. Our results show that, immediately after 96 h of PSD, rats (10 per group) that were injected with a psychostimulant presented lower percentages of paradoxical sleep compared to those injected with saline (P < 0.01). Regarding slow wave sleep (SWS), rats injected with psychostimulants after PSD presented a late rebound (on the second night subsequent to the injection) in the percentage of this phase of sleep when compared to PSD rats injected with saline (P < 0.05). In addition, the current study has produced evidence of the characteristic effect of each drug on sleep architecture. Home cage control rats injected with modafinil and methamphetamine showed a reduction in SWS compared with the saline group. Methamphetamine affected sleep patterns most, since it significantly reduced paradoxical sleep, SWS and sleep efficiency before and after PSD compared to control (P < 0.05). Cocaine was the psychostimulant causing the least changes in sleep pattern in relation to those observed after saline injection. Therefore, our results suggest that abuse of these psychostimulants in a PSD paradigm aggravates their impact on sleep patterns.
Resumo:
Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.
Resumo:
Study Objectives: Chronic sleep deprivation of rats causes hyperphagia without body weight gain. Sleep deprivation hyperphagia is prompted by changes in pathways governing food intake; hyperphagia may be adaptive to sleep deprivation hypermetabolism. A recent paper suggested that sleep deprivation might inhibit ability of rats to increase food intake and that hyperphagia may be an artifact of uncorrected chow spillage. To resolve this, a palatable liquid diet (Ensure) was used where spillage is insignificant. Design: Sleep deprivation of male Sprague Dawley rats was enforced for 10 days by the flowerpot/platform paradigm. Daily food intake and body weight were measured. On day 10, rats were transcardially perfused for analysis of hypothalamic mRNA expression of the orexigen, neuropeptide Y (NPY). Setting: Morgan State University, sleep deprivation and transcardial perfusion; University of Maryland, NPY in situ hybridization and analysis. Measurements and Results: Using a liquid diet for accurate daily measurements, there was no change in food intake in the first 5 days of sleep deprivation. Importantly, from days 6-10 it increased significantly, peaking at 29% above baseline. Control rats steadily gained weight but sleep-deprived rats did not. Hypothalamic NPY mRNA levels were positively correlated to stimulation of food intake and negatively correlated with changes in body weight. Conclusion: Sleep deprivation hyperphagia may not be apparent over the short term (i.e., <= 5 days), but when extended beyond 6 days, it is readily observed. The timing of changes in body weight and food intake suggests that the negative energy balance induced by sleep deprivation prompts the neural changes that evoke hyperphagia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Neuroethologic differences in sleep deprivation induced by the single- and multiple-platform methods
Resumo:
It has been proposed that the multiple-platform method (MP) for desynchronized sleep (DS) deprivation eliminates the stress induced by social isolation and by the restriction of locomotion in the single-platform (SP) method. MP, however, induces a higher increase in plasma corticosterone and ACTH levels than SP. Since deprivation is of heuristic value to identify the functional role of this state of sleep, the objective of the present study was to determine the behavioral differences exhibited by rats during sleep deprivation induced by these two methods. All behavioral patterns exhibited by a group of 7 albino male Wistar rats submitted to 4 days of sleep deprivation by the MP method (15 platforms, spaced 150 mm apart) and by 7 other rats submitted to sleep deprivation by the SP method were recorded in order to elaborate an ethogram. The behavioral patterns were quantitated in 10 replications by naive observers using other groups of 7 rats each submitted to the same deprivation schedule. Each quantification session lasted 35 min and the behavioral patterns presented by each rat over a period of 5 min were counted. The results obtained were: a) rats submitted to the MP method changed platforms at a mean rate of 2.62 ± 1.17 platforms h-1 animal-1; b) the number of episodes of noninteractive waking patterns for the MP animals was significantly higher than that for SP animals (1077 vs 768); c) additional episodes of waking patterns (26.9 ± 18.9 episodes/session) were promoted by social interaction in MP animals; d) the cumulative number of sleep episodes observed in the MP test (311) was significantly lower (chi-square test, 1 d.f., P<0.05) than that observed in the SP test (534); e) rats submitted to the MP test did not show the well-known increase in ambulatory activity observed after the end of the SP test; f) comparison of 6 MP and 6 SP rats showed a significantly shorter latency to the onset of DS in MP rats (7.8 ± 4.3 and 29.0 ± 25.0 min, respectively; Student t-test, P<0.05). We conclude that the social interaction occurring in the MP test generates additional stress since it increases the time of forced wakefulness and reduces the time of rest promoted by synchronized sleep.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Long-haul drivers work in irregular schedules due to load delivery demands. In general, driving and sleeping occur at irregular times and, consequently, partial sleep deprivation and/or circadian misalignment may emerge and result in sleepiness at the wheel. In this way, the aim of this study was to verify changes in the postural control parameters of professional drivers after one-night working. Eight male truck drivers working at night - night drivers (ND) and nine day drivers (DD) volunteered to participate in this study. The night drivers' postural stability was assessed immediately before and after an approximately 430 km journey by two identical force platforms at departure and arrival sites. The DD group was measured before and after a day's work. An interaction effect of time of day and type of shift in both conditions: eyes open (p < 0.01) and eyes closed (p < 0.001) for amplitude of mediolateral movements was observed. Postural stability, measured by force platform, is affected by a night of work, suggesting that it could be an effect of circadian and homeostatic influences over postural control.
Resumo:
Dettoni JL, Consolim-Colombo FM, Drager LF, Rubira MC, de Souza SB, Irigoyen MC, Mostarda C, Borile S, Krieger EM, Moreno H Jr, Lorenzi-Filho G. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol 113: 232-236, 2012. First published April 26, 2012; doi: 10.1152/japplphysiol.01604.2011.-Sleep deprivation is common in Western societies and is associated with increased cardiovascular morbidity and mortality in epidemiological studies. However, the effects of partial sleep deprivation on the cardiovascular system are poorly understood. In the present study, we evaluated 13 healthy male volunteers (age: 31 +/- 2 yr) monitoring sleep diary and wrist actigraphy during their daily routine for 12 nights. The subjects were randomized and crossover to 5 nights of control sleep (>7 h) or 5 nights of partial sleep deprivation (<5 h), interposed by 2 nights of unrestricted sleep. At the end of control and partial sleep deprivation periods, heart rate variability (HRV), blood pressure variability (BPV), serum norepinephrine, and venous endothelial function (dorsal hand vein technique) were measured at rest in a supine position. The subjects slept 8.0 +/- 0.5 and 4.5 +/- 0.3 h during control and partial sleep deprivation periods, respectively (P < 0.01). Compared with control, sleep deprivation caused significant increase in sympathetic activity as evidenced by increase in percent low-frequency (50 +/- 15 vs. 59 +/- 8) and a decrease in percent high-frequency (50 +/- 10 vs. 41 +/- 8) components of HRV, increase in low-frequency band of BPV, and increase in serum norepinephrine (119 +/- 46 vs. 162 +/- 58 ng/ml), as well as a reduction in maximum endothelial dependent venodilatation (100 +/- 22 vs. 41 +/- 20%; P < 0.05 for all comparisons). In conclusion, 5 nights of partial sleep deprivation is sufficient to cause significant increase in sympathetic activity and venous endothelial dysfunction. These results may help to explain the association between short sleep and increased cardiovascular risk in epidemiological studies.
Resumo:
Narcolepsy is characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep abnormalities, including cataplexy. The aim of this study was to assess REM sleep pressure and homeostasis in narcolepsy. Six patients with narcolepsy and six healthy controls underwent a REM sleep deprivation protocol, including one habituation, one baseline, two deprivation nights (D1, D2) and one recovery night. Multiple sleep latency tests (MSLTs) were performed during the day after baseline and after D2. During D1 and D2 REM sleep was prevented by awakening the subjects at the first polysomnographic signs of REM sleep for 2 min. Mean sleep latency and number of sleep-onset REM periods (SOREMs) were determined on all MSLT. More interventions were required to prevent REM sleep in narcoleptics compared with control subjects during D1 (57 ± 16 versus 24 ± 10) and D2 (87 ± 22 versus 35 ± 8, P = 0.004). Interventions increased from D1 to D2 by 46% in controls and by 53% in narcoleptics (P < 0.03). Selective REM sleep deprivation was successful in both controls (mean reduction of REM to 6% of baseline) and narcoleptics (11%). Both groups had a reduction of total sleep time during the deprivation nights (P = 0.03). Neither group had REM sleep rebound in the recovery night. Narcoleptics had, however, an increase in the number of SOREMs on MSLT (P = 0.005). There was no increase in the number of cataplexies after selective REM sleep deprivation. We conclude that: (i) REM sleep pressure is higher in narcoleptics; (ii) REM sleep homeostasis is similar in narcoleptics and controls; (iii) in narcoleptics selective REM sleep deprivation may have an effect on sleep propensity but not on cataplexy.
Resumo:
To investigate whether there are any objective EEG characteristics that change significantly between specific time periods during maintenance of wakefulness test (MWT) and whether such changes are associated with the ability to appropriately communicate sleepiness.
Resumo:
To investigate the regulation NREM sleep at baseline and in morning recovery sleep after partial and total sleep deprivation (SD) in narcolepsy-cataplexy (NC) using cyclic alternating pattern (CAP).