994 resultados para SIMILARITY NETWORK
Resumo:
Traditional supervised data classification considers only physical features (e. g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
Resumo:
The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2×2×2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test-retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905±0.033 between-sessions; 0.885±0.052 between-scanners) than ASL (0.545±0.048; 0.575±0.059). Nevertheless, ASL provided highly reproducible (0.955±0.021; 0.970±0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners.
Resumo:
Extensive investigation has been conducted on network data, especially weighted network in the form of symmetric matrices with discrete count entries. Motivated by statistical inference on multi-view weighted network structure, this paper proposes a Poisson-Gamma latent factor model, not only separating view-shared and view-specific spaces but also achieving reduced dimensionality. A multiplicative gamma process shrinkage prior is implemented to avoid over parameterization and efficient full conditional conjugate posterior for Gibbs sampling is accomplished. By the accommodating of view-shared and view-specific parameters, flexible adaptability is provided according to the extents of similarity across view-specific space. Accuracy and efficiency are tested by simulated experiment. An application on real soccer network data is also proposed to illustrate the model.
Resumo:
The Neural Networks customized and tested in this thesis (WaldoNet, FlowNet and PatchNet) are a first exploration and approach to the Template Matching task. The possibilities of extension are therefore many and some are proposed below. During my thesis, I have analyzed the functioning of the classical algorithms and adapted with deep learning algorithms. The features extracted from both the template and the query images resemble the keypoints of the SIFT algorithm. Then, instead of similarity function or keypoints matching, WaldoNet and PatchNet use the convolutional layer to compare the features, while FlowNet uses the correlational layer. In addition, I have identified the major challenges of the Template Matching task (affine/non-affine transformations, intensity changes...) and solved them with a careful design of the dataset.
Resumo:
The purpose of this work was to investigate possible patterns occurring in the sewage bacterial content of four cities (Bologna, Budapest, Rome, Rotterdam) over time (March 2020 - November 2021), also considering the possible effects of the lockdown periods due to the COVID-19 pandemic. The sewage metagenomics data were provided within VEO (Versatile Emerging infectious disease Observatory) project. The first analysis was the evaluation of the between samples diversity, looking for (dis)similarities among the cities, as well as among different time periods (seasonality). To this aim, we computed both similarity networks and Principal Coordinate Analysis (PCoA) plots based on the Bray-Curtis metric. Then, the alpha-biodiversity of the samples was estimated by means of different diversity indices. By looking at the temporal behaviour of the biodiversity in the four cities, we noticed an abrupt decrease in both Rome and Budapest in the Summer of 2020, that is related to: the prevalence of some species when the minimum occurred, and the change in correlations among species (studied via correlation networks), which is enriched in the period of minimum biodiversity. Rotterdam samples seem to be very different with respect to those from the other cities, as confirmed by PCoA. Moreover, the Rotterdam time series is proved to be stable and stationary also in terms of biodiversity. The low variability in the Rotterdam samples seems to be related to the species of Pseudomonas genus, which are highly variable and plentiful in the other cities, but are not among the most abundant in Rotterdam. Also, we observed that no seasonality effect emerged from the time series of the four cities. Regarding the impact of lockdown periods due to the COVID-19 pandemic, from the limited data available no effect on the time series considered emerges. More samples will be soon available and these analyses will be performed also on them, so that the possible effects of lockdowns may be studied.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
32
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
83
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
Mother and infant mortality has been the scope of analysis throughout the history of public health in Brazil and various strategies to tackle the issue have been proposed to date. The Ministry of Health has been working on this and the Rede Cegonha strategy is the most recent policy in this context. Given the principle of comprehensive health care and the structure of the Unified Health System in care networks, it is necessary to ensure the integration of health care practices, among which are the sanitary surveillance actions (SSA). Considering that the integration of health care practices and SSA can contribute to reduce mother and infant mortality rates, this article is a result of qualitative research that analyzed the integration of these actions in four cities in the State of São Paulo/Brazil: Campinas, Indaiatuba, Jaguariúna and Santa Bárbara D'Oeste. The research was conducted through interviews with SSA and maternal health managers, and the data were evaluated using thematic analysis. The results converge with other studies, identifying the isolation of health care practices and SSA. The insertion of SSA in collectively-managed areas appears to be a potential strategy for health planning and implementation of actions in the context under scrutiny.
Resumo:
To describe the clinical history of a child with aggressive behavior and recurring death-theme speech, and report the experience of the team of authors, who proposed an alternative to medication through the establishment of a protection network and the inter-sector implementation of the circle of security concept. A 5-year-old child has a violent and aggressive behavior at the day-care. The child was diagnosed by the healthcare center with depressive disorder and behavioral disorder, and was medicated with sertraline and risperidone. Side effects were observed, and the medications were discontinued. Despite several actions, such as talks, teamwork, psychological and psychiatric follow-up, the child's behavior remained unchanged. A unique therapeutic project was developed by Universidade Estadual de Campinas' Medical School students in order to establish a connection between the entities responsible for the child's care (daycare center, healthcare center, and family). Thus, the team was able to develop a basic care protection network. The implementation of the inter-sector circle of security, as well as the communication and cooperation among the teams, produced very favorable results in this case. This initiative was shown to be a feasible and effective alternative to the use of medication for this child.
Resumo:
The scope of this study is to identify the prevalence of access to information about how to prevent oral problems among schoolchildren in the public school network, as well as the factors associated with such access. This is a cross-sectional and analytical study conducted among 12-year-old schoolchildren in a Brazilian municipality with a large population. The examinations were performed by 24 trained dentists and calibrated with the aid of 24 recorders. Data collection occurred in 36 public schools selected from the 89 public schools of the city. Descriptive, univariate and multiple analyses were conducted. Of the 2510 schoolchildren included in the study, 2211 reported having received information about how to prevent oral problems. Access to such information was greater among those who used private dental services; and lower among those who used the service for treatment, who evaluated the service as regular or bad/awful. The latter use toothbrush only or toothbrush and tongue scrubbing as a means of oral hygiene and who reported not being satisfied with the appearance of their teeth. The conclusion drawn is that the majority of schoolchildren had access to information about how to prevent oral problems, though access was associated with the characteristics of health services, health behavior and outcomes.