974 resultados para SEPARATION EFFICIENCY
Resumo:
The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu2+, Pb2+). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3 = 2.3, Na2O/SiO2 = 1.4, H2O/Na2O = 50, crystallization time 8 h, crystallization temperature 95 �C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g�1 for Cu2+, Pb2+ with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu2+, Pb2+ from water with metallic contaminants and can be separated easily after a magnetic process.
Resumo:
Miniaturization of analytical instrumentation is attracting growing interest in response to the explosive demand for rapid, yet sensitive analytical methods and low-cost, highly automated instruments for pharmaceutical and bioanalyses and environmental monitoring. Microfabrication technology in particular, has enabled fabrication of low-cost microdevices with a high degree of integrated functions, such as sample preparation, chemical reaction, separation, and detection, on a single microchip. These miniaturized total chemical analysis systems (microTAS or lab-on-a-chip) can also be arrayed for parallel analyses in order to accelerate the sample throughput. Other motivations include reduced sample consumption and waste production as well as increased speed of analysis. One of the most promising hyphenated techniques in analytical chemistry is the combination of a microfluidic separation chip and mass spectrometer (MS). In this work, the emerging polymer microfabrication techniques, ultraviolet lithography in particular, were exploited to develop a capillary electrophoresis (CE) separation chip which incorporates a monolithically integrated electrospray ionization (ESI) emitter for efficient coupling with MS. An epoxy photoresist SU-8 was adopted as structural material and characterized with respect to its physicochemical properties relevant to chip-based CE and ESI/MS, namely surface charge, surface interactions, heat transfer, and solvent compatibility. As a result, SU-8 was found to be a favorable material to substitute for the more commonly used glass and silicon in microfluidic applications. In addition, an infrared (IR) thermography was introduced as direct, non-intrusive method to examine the heat transfer and thermal gradients during microchip-CE. The IR data was validated through numerical modeling. The analytical performance of SU-8-based microchips was established for qualitative and quantitative CE-ESI/MS analysis of small drug compounds, peptides, and proteins. The CE separation efficiency was found to be similar to that of commercial glass microchips and conventional CE systems. Typical analysis times were only 30-90 s per sample indicating feasibility for high-throughput analysis. Moreover, a mass detection limit at the low-attomole level, as low as 10E+5 molecules, was achieved utilizing MS detection. The SU-8 microchips developed in this work could also be mass produced at low cost and with nearly identical performance from chip to chip. Until this work, the attempts to combine CE separation with ESI in a chip-based system, amenable to batch fabrication and capable of high, reproducible analytical performance, have not been successful. Thus, the CE-ESI chip developed in this work is a substantial step toward lab-on-a-chip technology.
Resumo:
This thesis discusses the use of sub- and supercritical fluids as the medium in extraction and chromatography. Super- and subcritical extraction was used to separate essential oils from herbal plant Angelica archangelica. The effect of extraction parameters was studied and sensory analyses of the extracts were done by an expert panel. The results of the sensory analyses were compared to the analytically determined contents of the extracts. Sub- and supercritical fluid chromatography (SFC) was used to separate and purify high-value pharmaceuticals. Chiral SFC was used to separate the enantiomers of racemic mixtures of pharmaceutical compounds. Very low (cryogenic) temperatures were applied to substantially enhance the separation efficiency of chiral SFC. The thermodynamic aspects affecting the resolving ability of chiral stationary phases are briefly reviewed. The process production rate which is a key factor in industrial chromatography was optimized by empirical multivariate methods. General linear model was used to optimize the separation of omega-3 fatty acid ethyl esters from esterized fish oil by using reversed-phase SFC. Chiral separation of racemic mixtures of guaifenesin and ferulic acid dimer ethyl ester was optimized by using response surface method with three variables per time. It was found that by optimizing four variables (temperature, load, flowate and modifier content) the production rate of the chiral resolution of racemic guaifenesin by cryogenic SFC could be increased severalfold compared to published results of similar application. A novel pressure-compensated design of industrial high pressure chromatographic column was introduced, using the technology developed in building the deep-sea submersibles (Mir 1 and 2). A demonstration SFC plant was built and the immunosuppressant drug cyclosporine A was purified to meet the requirements of US Pharmacopoeia. A smaller semi-pilot size column with similar design was used for cryogenic chiral separation of aromatase inhibitor Finrozole for use in its development phase 2.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Nature is a school for scientists and engineers. Inherent multiscale structures of biological materials exhibit multifunctional integration. In nature, the lotus, the water strider, and the flying bird evolved different and optimized biological solutions to survive. In this contribution, inspired by the optimized solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, and superior repellency towards different corrosive solutions. This approach provides an effective avenue to the development of water strider robots and other aquatic smart devices floating on water. Furthermore, the resultant multifunctional metallic foam can be used to construct an oil/water separation apparatus, exhibiting a high separation efficiency and long-term repeatability. The presented approach should provide a promising solution for the design and construction of other multifunctional metallic foams in a large scale for practical applications in the petro-chemical field. Optimized biological solutions continue to inspire and to provide design idea for the construction of multiscale structures with multifunctional integration. Inspired by the optimized biological solutions from the lotus leaf with superhydrophobic self-cleaning, the water strider leg with durable and robust superhydrophobicity, and the lightweight bird bone with hollow structures, multifunctional metallic foams with multiscale structures are fabricated, demonstrating low adhesive superhydrophobic self-cleaning, striking loading capacity, stable corrosion resistance, and oil/water separation.
Resumo:
In this work composites of poly(3-hexylethiophene) (P3HT) and a thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one) (DTCPA) having donor acceptor architecture (DAD) were prepared. Photovoltaic properties of these hybrid composites were evaluated. DTCPA, which is a highly crystalline organic molecule with wide absorption range, was observed to improve the open circuit voltage of the solar cell. Furthermore, DTCPA crystals acts as a nucleating center and increases the molecular ordering of P3HT in the composite. Improved charge separation efficiency was observed by photoluminescence spectroscopy. Because of high built in potential in these devices, large open circuit voltage was observed. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.
Resumo:
对分离效率与液相流速、油水比例和旋流器级数之间的关系进行了系统的实验研究.通过受力分析从理论上对细颗粒易受参数影响的原因进行了阐述,并根据量纲分析和实验数据得到了分离效率与Re数和St数之间的函数关系.在此基础上,对液固旋流器的现场应用提出了有价值的建议.
Resumo:
Diversas aplicações industriais relevantes envolvem os processos de adsorção, citando como exemplos a purificação de produtos, separação de substâncias, controle de poluição e umidade entre outros. O interesse crescente pelos processos de purificação de biomoléculas deve-se principalmente ao desenvolvimento da biotecnologia e à demanda das indústrias farmacêutica e química por produtos com alto grau de pureza. O leito móvel simulado (LMS) é um processo cromatográfico contínuo que tem sido aplicado para simular o movimento do leito de adsorvente, de forma contracorrente ao movimento do líquido, através da troca periódica das posições das correntes de entrada e saída, sendo operado de forma contínua, sem prejuízo da pureza das correntes de saída. Esta consiste no extrato, rico no componente mais fortemente adsorvido, e no rafinado, rico no componente mais fracamente adsorvido, sendo o processo particularmente adequado a separações binárias. O objetivo desta tese é estudar e avaliar diferentes abordagens utilizando métodos estocásticos de otimização para o problema inverso dos fenômenos envolvidos no processo de separação em LMS. Foram utilizados modelos discretos com diferentes abordagens de transferência de massa, com a vantagem da utilização de um grande número de pratos teóricos em uma coluna de comprimento moderado, neste processo a separação cresce à medida que os solutos fluem através do leito, isto é, ao maior número de vezes que as moléculas interagem entre a fase móvel e a fase estacionária alcançando assim o equilíbrio. A modelagem e a simulação verificadas nestas abordagens permitiram a avaliação e a identificação das principais características de uma unidade de separação do LMS. A aplicação em estudo refere-se à simulação de processos de separação do Baclofen e da Cetamina. Estes compostos foram escolhidos por estarem bem caracterizados na literatura, estando disponíveis em estudos de cinética e de equilíbrio de adsorção nos resultados experimentais. De posse de resultados experimentais avaliou-se o comportamento do problema direto e inverso de uma unidade de separação LMS visando comparar os resultados obtidos com os experimentais, sempre se baseando em critérios de eficiência de separação entre as fases móvel e estacionária. Os métodos estudados foram o GA (Genetic Algorithm) e o PCA (Particle Collision Algorithm) e também foi feita uma hibridização entre o GA e o PCA. Como resultado desta tese analisouse e comparou-se os métodos de otimização em diferentes aspectos relacionados com o mecanismo cinético de transferência de massa por adsorção e dessorção entre as fases sólidas do adsorvente.
Resumo:
Capillary electrophoresis (CE) has been abundantly used in the study of molecular interactions owing to such advantages as short analysis time, low sample size requirement, high separation efficiency, and flexible applications. The focus of this paper is to 2 review recent studies and advances (mainly from 1998 to now) in biomolecular interactions using CE. Five CE modes: zone migration CE, affinity CE, frontal analysis (FA), Hummel-Dreyer (HD) and vacancy peak (VP) are cited and compared. Quantitative aspects of the thermodynamics and kinetics of biomolecular interaction are reviewed. Several biomolecular binding systems, including protein-protein (polypeptide), protein-DNA (RNA), protein(polypeptide)-carbohydrate, protein-small molecule, DNA-small molecule, small molecule-small molecule, have been well characterized by CE. CE is shown to be a powerful tool for the determination of the binding parameters of various bioaffinity interactions.
Resumo:
An apparatus including a rotary-type injector was designed for quantitative sample injection in capillary electrophoresis (CE), in which both pressurized flow and electroosmotic flow were used to drive the background electrolyte solution. A relative standard deviation of peak area of lower than 1% was achieved by using this apparatus. The effects of back-pressure regulator, restrictor, and applied voltage on separation efficiency and resolution were investigated. The utility of this apparatus in both micro-HPLC and pressurized capillary electrochromatography (pCEC) was also demonstrated.
Resumo:
Capillary electrophoresis (CE) with amperometric detection (AD) has been widely used in various fields of analytical science, especially in the pharmaceutical industry recently due to its high separation efficiency and low detection limit. The determination of active ingredients in Chinese herb medicines by CE-AD is of great importance in developing the researches on pharmacology of herbs, quantitative analysis and quality control. Analyses of the effective components in Chinese herb medicines and compound Chinese herb medicine by CE-AD are reviewed in this paper. In contrast with other analysis methods, the advantage of CE-AD is discussed. The development in analyses of traditional Chinese medicine (TCM) by CE-AD in future is mentioned.
Resumo:
Capillary electrophoresis (CE) with amperometric detection (AD) has been widely used in various fields of analytical science, especially in the pharmaceutical industry recently due to its high separation efficiency and low detection limit. The determination of active ingredients in Chinese herb medicines by CE-AD is of great importance in developing the researches on pharmacology of herbs, quantitative analysis and quality control. Analyses of the effective components in Chinese herb medicines and compound Chinese herb medicine by CE-AD are reviewed in this paper. In contrast with other analysis methods, the advantage of CE-AD is discussed. The development in analyses of traditional Chinese medicine (TCM) by CE-AD in future is mentioned.
Resumo:
In this work, a method was established for the determination of impurities in high purity tellurium by inductively coupled plasma mass spectrometry (ICP-MS) after Fe(OH)(3) coprecipitation. After comparison of coprecipitation ability and separation efficiency between Fe(OH), and Al(OH)(3), Fe(OH)(3) was chosen as the precipitate. A separation factor of 160 for 200 mg tellurium was obtained under conditions of pH 9 and 2 mg of Fe3(+). The 13 elements, such as Bi, Sn, Pb, In, Tl, Cd, Cu, Co, Ni, Zn, Ti, Be and Zr, could be almost completely coprecipitated under these conditions. In addition, Te memory effect imposed on the ICP-MS instrument was assessed, as well as Te matrix effect that caused the low recovery of Ga, As, Sb and V in real sample was discussed. Finally, the method was evaluated through recovery test and was applied to practical sample analysis, with detection limits of most of the elements being below 0.15 mug g(-1) and R.S.D. below or at approximately 10%, which indicated that this method could fully satisfy the requirements for analysis of 99.999% similar to 99.9999% high purity Te.