965 resultados para SENSING PROPERTIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel metal (II) phthalocyanine complexes were synthesized by cyclic tetramerisation reaction of a dicyano benzene component and different metal ions (Pd2+, Co2+, Zn2+). The structure of complexes was confirmed by elemental analysis, mass and IR spectrum. The excellent solubility of the complexes in benzene enabled us to obtain films by a spin-coating method. The films were characterized by IR, electronic spectral and AFM. The gas sensing properties to NO2 of the metal (II) phthalocyanine complex films were studied. In addition, the effects of different metal ions and the gas sensing temperature on the sensing properties were studied. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kind of 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-metallonaphthalocyanines complexes MNc(iso-PeO)(8) (M = Co, Cu, Pd) are used as spincoating film-forming materials. The surface morphologies of the films prepared were studied first. These films were then used for the experiments of NO2 sensing. The effects of sensing temperature as well as the NO concentration on the sensing properties were studied. The experimental results showed that the three MNc(iso-PeO)(8) films were uniform, smooth and dense. Due to the different metal ions (M) on the center of naphthalocyanine, the CoNc(iso-PeO)(8) film had a higher film resistance and response-recovery rate in the NO2 sensing experiments. On the contrary, the response to NO2 of the PdNc(iso-PeO)(8) and CuNc(iso-PeO)(8) films were superior to that of CoNc(iso-PeO)(8). By varying the sensing temperature, it was found that the elevation of sensing temperature could improve the sensing response, recovery ratio, and sensitivity of the sensing films. At high concentrations of NO2, the response time became shorter. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spin-coated film of lead tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin complex (PbTAP(t-Bu)(4)) was obtained and characterized by IR spectra, absorption spectra and atomic force microscopy. The response and recovery characteristics of the film to NH3, NO2 and C2H5OH vapor were investigated at room temperature. In addition, the reversibility and stability of the film to NH3 were also studied. The results indicate that the PbTAP(t-Bu)(4) derivative can be exploited as an NH3 sensor at room temperature. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-coated films of nickel 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-naphthalocyanine complex were obtained and characterized by UV-vis absorption spectroscopy. A linear relationship between the absorbance and solution concentration was observed. Low concentration solutions could afford smooth and homogeneous film surfaces as indicated by atomic force microscopy. The film structure was studied by small angle X-ray diffraction. The films were used for NO2 sensing experiments. The results indicate that the elevation of sensing temperature can shorten the response time and increase recovery ratio and response magnitude of the sensing films. High NO2 concentration can also shorten response time. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

W-doped Fe2O3 films have been fabricated on polycrystalline alumina substrates by the RF magnetron sputtering method, and effects of annealing temperature on the NO2 sensing properties have been examined. The crystal structure of the obtained film changed from Fe3O4 to α-Fe2O3 after annealing at temperatures of 500 to 500°C in air. An increase in the annealing temperature increased the particle size, resulting in a decrease in the NO2-gas sensitivity. These results suggest that the NO2 sensitivity of W-doped Fe2O3 film depends on the particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the fabrication method of a new type of carbon monoxide gas sensor based on SnOx with low power consumption and its sensing characteristics have been reported. The electric conductance of this type of sensor evolves oscillation form regularly when the sensor is exposed to low level of CO gas. The oscillation amplitude is directly proportional to the concentration of CO gas over a wide range. The effects of relevant factors. such as. humidity, temperature and interference gases on the sensor properties were examined. The sensing oscillation response mechanism was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper phthalocyanine derivative Langmuir-Blodgett (LB) films were prepared by vertical dipping and horizontal lifting methods. Molecular orientation of copper phthalocyanine derivative in thin films was studied by polarized UV-Vis spectra. The relationship between the molecular orientation of copper phthalocyanine in LB films and their gas-sensing properties was investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of one-dimensional (1D) V2O5 center dot nH(2)O nanostructures as pH sensing material was evaluated. 1D V2O5 center dot nH(2)O nanostructures were obtained by a hydrothermal method with systematic control of morphology forming different nanostructures: nanoribbons, nanowires and nanorods. Deposited onto Au-covered substrates, 1D V2O5 center dot nH(2)O nanostructures were employed as gate material in pH sensors based on separative extended gate FET as an alternative to provide FET isolation from the chemical environment. 1D V2O5 center dot nH(2)O nanostructures showed pH sensitivity around the expected theoretical value. Due to high pH sensing properties, flexibility and low cost, further applications of 1D V2O5 center dot nH(2)O nanostructures comprise enzyme FET-based biosensors using immobilized enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabile Radikale haben in vielen Bereichen der Chemie, Physik, Biologie und Biomedizin ihren Nutzen unter Beweis gestellt. Gerade im letzten Jahrzehnt erlebte diese Substanzklasse vor allem wegen den Anwendungsmöglichkeiten von Nitroxiden als Red-Ox-Sensoren oder magnetischen Materialen ein erneutes Interesse. Das erste Kapitel beschäftigt sich mit der grundlegenden Theorie zur Entwicklung magnetischer Materialien. Des Weiteren sollen anhand einiger Beispiele Radikale im Komplex mit paragmagnetischen Metallen, Biradikale und Polyradikale beschrieben werden. rnrnIm zweiten Kapitel soll auf die Synthese von Hybrid Fluorophore-Nitrononyl-Nitroxid und Iminonitroxidradiale, sowie ihre Charakterisierung über IR, CV, EPR und Röntgenstrukturanalyse eingegangen werden. Mittels UV/Vis-Spektroskopie soll hierbei eine mögliche Anwendung als Red-Ox-Sensoren festgestellt werden. Hierbei werden über anschließende PL Untersuchungen eben diese Sensoreigenschaften der dargestellten Radikale bestätigt werden. Vielmehr noch soll die Möglichkeit von Pyren-Pyrazol-Nitronyl-Nitroxid als NO-Nachweis erläutert werden.rnrnFortschritte sowohl im Design als auch in der Analyse von magnetischen Materialen auf der Basis von Nitroxiden ist Thema des dritten Kapitels. Über ein klassisches Ullmann-Protokoll wurden verschiedene Nitronyl-Nitroxid und Iminonitroxid Biradiale mit unterschiedlichen π-Brücken zwischen den Radikalzentren synthetisiert. Magnetische Messungen belegen einen relativ starken antiferromagnetischen intramolekularen Austausch für den Großteil der untersuchten Biradikale. Hierbei zeigte sich jedoch eine außergewöhnliche hohe Austausch-Kupplung für 3,3‘-Diazatolandiradikale, die nur über die Existenz von starken intermolekularen Wechselwirkungen beschrieben werden kann. Durch Kombination der Röntgenstrukturanalyse mit DFT Berechnungen konnte im Fall des Tolan verbrückten Diradikals 87c die Intra-Dimer-Kupplung auf Jintra = -8,6 K bestimmt werden. Ein direkter Beweis für eine intermolekulare Anlagerung von Jinter ~- 2K konnte über eine Tieftemperatur AC-Messung von 87c erhalten werden. Bezüglich der magnetischen Messung ist das Nitronyl Biradikal 87c ein vielversprechender Kandidat für einen rein organischen eindimensionalen Quantenmagnet.rnrnAbsicht dieser Untersuchungen ist es zu zeigen, dass über die Kombination verschiedener struktureller Elemente die Sensitivität von Nitroxid basierten Sensoren und die intramolekulare Austauschwechselwirkung in π-konjugierten Spinsystemen so eingestellt werden kann, dass es möglich ist Moleküle mit gezielten Sensor- oder Magneteigenschaften zu entwickeln. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, several researchers have shown the good performance of alkali activated slag cement and concretes. Besides their good mechanical properties and durability, this type of cement is a good alternative to Portland cements if sustainability is considered. Moreover, multifunctional cement composites have been developed in the last decades for their functional applications (self-sensing, EMI shielding, self-heating, etc.). In this study, the strain and damage sensing possible application of carbon fiber reinforced alkali activated slag pastes has been evaluated. Cement pastes with 0, 0.29 and 0.58 vol % carbon fiber addition were prepared. Both carbon fiber dosages showed sensing properties. For strain sensing, function gage factors of up to 661 were calculated for compressive cycles. Furthermore, all composites with carbon fibers suffered a sudden increase in their resistivity when internal damages began, prior to any external signal of damage. Hence, this material may be suitable as strain or damage sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both strain and damage sensing properties on carbon nanofiber cement composites (CNFCC) are reported in the present paper. Strain sensing tests were first made on the material’s elastic range. The applied loading levels have been previously calculated from mechanical strength tests. The effect of several variables on the strain-sensing function was studied, e.g. cement pastes curing age, current density, loading rate or maximum stress applied. All these parameters were discussed using the gage factor as reference. After this first set of elastic experiments, the same specimens were gradually loaded until material’s failure. At the same time both strain and resistivity were measured. The former was controlled using strain gages, and the latter using a multimeter on a four probe setup. The aim of these tests was to prove the sensitivity of these CNF composites to sense their own damage, i.e. check the possibility of fabricating structural damage sensors with CNFCC’s. All samples with different CNF dosages showed good strain-sensing capacities for curing periods of 28 days. Furthermore, a 2%CNF reinforced cement paste has been sensitive to its own structural damage.