169 resultados para SEABREAM SPARUS-AURATA
Resumo:
Report for the scientific sojourn at the University of Maryland Biotechnology Institute from February to August 2007. Myogenesis of skeletal muscles in vertebrates is controlled by extracellular signalling molecules together with intracellular transcription factors. Among the transcriptional factors, the members of the myogenic regulatory family play important roles regulating skeletal muscle development and growth. To characterize the gene structure and expression of fish myogenin, we have isolated the myogenin genomic gene and cDNA from gilthead seabream (Sparus aurata) and analyzed the genomic structure, pattern of expression and the regulation of musclespecific expression. Sequence analysis revealed that the seabream myogenin shares a similar gene structure with other fish myogenins, with three exons, two introns and the highly conserved bHLH domain. Expression studies demonstrated that myogenin is expressed in both slow and fast muscles as well as in muscle cells in primary culture. In situ hybridization showed that myogenin was specifically expressed in developing somites of seabream embryos. Promoter activity analysis demonstrated that the myogenin promoter could drive green fluorescence protein expression in muscle cells of zebrafish embryos, as well as in myofibers of adult zebrafish and juvenile seabream.
Resumo:
The purpose of this study was to compare xenobiotic CYP1A induction in liver, gills, and excretory kidney of gilthead seabream, Sparus aurata. Fishes were exposed via water for 20 days to different concentrations of benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CYP1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, and at the protein level by means of ELISA. The liver displayed the highest absolute levels of EROD activity, both under non-exposed and exposed conditions. Organ- or inducer-related differences in the time course of CYP1A induction were moderate; however, the magnitude of the induction response varied between the organs and between B(a)P and TCDD. In the case of TCDD, liver, and kidney yielded a comparable induction response, whereas in the case of B(a)P, the kidney showed a substantially higher maximum induction factor than the liver. In the gills, the two xenobiotics resulted in similar maximum induction factors. In B(a)P-exposed seabream, EROD activities and CYP1A protein levels showed a good correlation in all three organs, whereas with TCDD as inducer the correlation was poor, what was mainly due to a decrease of EROD activities at the higher concentrations of TCDD, while CYP1A protein levels showed no concomitant decline. Overall, the study revealed both similarities and differences in the time-, concentration-, and inducer-dependent CYP1A responses of the three target organs, liver, kidney, and gills. Although, the findings of this study principally confirm the notion of the liver as the major metabolic organ in fish, they also provide evidence for substantial metabolic potential in gills and particularly in the kidney.
Resumo:
Watanabe et al. (1991 a,b) state that, vitamin E and carotenoids perform an essential role on the quality of egg spawning. Vitamin E is one of the main nutrients for the reproduction of fish (Izquierdo et al., 2001), and it has been proved that its inclusion in diets for broodstocks favors the quality of egg spawning in several species of fish (Watanabe and Takashima,1977; Takeuchi et al., 1981; Watanabe et al., 1985, 1991 a,b; Sutjaritvongsanon, 1987; Watanabe, 1990; Schimittou, 1993; Mushiake et al., 1993; Dube, 1996; Shiranee and Natarajan, 1996; Izquierdo et al., 2001; Morehead et al., 2001; Fernández- Palacios et al., 2005). On the other hand, the carotenoids which also perform an antioxidizing function (including the protection of lipids from oxidation), have been involved in the reproductive processes of marine organisms: crustaceans (Liñan-Cabello et al., 2002), marine fish (Watanabe y Kiron, 1995; Verakunpiriya et al., 1997 a,b; Vassallo-Agius et al., 2001 a,b,c, 2002; Watanabe and Vassallo-Agius 2003) and fresh water fish (Ahmadi et al., 2006). The results of this study suggest that the recommended levels of n-3 HUFA in diets for gilthead sea bream broodstocks could be increased up to 3,5 % when supplemented jointly with carotenoids from paprika oleoresin and vitamin E, thus favoring the quality of spawning.
Resumo:
[ES] Se estudia la utilización nutritiva de niveles crecientes de cuatro fuentes proteicas, harina de soja, de altramuz, harina de gluten de maíz y harina de carne y huesos, alternativas a la harina de pescado en dietas de engorde para dorada, especie que junto con la lubina ha experimentado uno de los mayores índices de crecimiento en el terreno de la acuicultura en los últimos 20 años en Europa
Resumo:
Since sudden mortalities and increased skeletal deformities in gilthead seabream juveniles are currently found in production hatcheries, this study aimed to evaluate the contribution of essential fatty acids, particularly DHA over early feed quality, larval growth, survival and the apparition of skeleton abnormalities in highly commercial interest specie such as Sparus aurata. Sea bream larvae were reared under intensive conditions and fed rotifers enriched with two different enrichment emulsions differing in DHA content. Thus, essential fatty acid composition of rotifers, showed fatty acid profile of enrichment emulsions. The increase in rotifers DHA (10.0 to 25.4% TFA) were also reflected in a higher DHA content in the FA composition of larval fed this rotifers (13.0 to 20.4% TFA) when these preys were the main source of food (14dah). Survival at 50 days after hatching (13.9±4.3) and growth evolution from 3dah until day 50, were similar in both treatments, whereas bone malformations, particularly opercula reduction, and jaw deformities were higher in higher DHA rotifers fed larvae.
Resumo:
The effects of dietary lipid levels in the spawning quality has been studied in several cultured fish species. Works like those of Watanabe et al. (1984 a); Mourente et al. (1989); Dhert et al. (1991); Bruce et al. (1993); Navas et al. (1997); Rodriguez et al. (1998); Lavens et al. (1999); Furuita et al. (2002, 2003 b); Mazorra et al. (2003); Fernandez- Palacios (2005) and Aijun et al. (2005) show that lipids and fatty acids are the dietetic components that have more influence in the spawning quality, specially in those species with continuous spawning which display short vitellogenesis periods and are able to incorporate these dietetic components in eggs during the spawning period. Diets for gilthead sea bream (Sparus aurata) broodstock with dietary levels of 2.84% n-3 HUFA, combined with levels of 250 mg/kg vitamine E rasure good spawning quality. Putting so indicative the importance for an effective utilization of essential fatty acids the use of adequate levels of antioxidants.
Resumo:
La presenza di residui dei farmaci ad uso umano e veterinario nelle acque superficiali è in costante aumento a causa del loro elevato consumo. L’impatto ambientale dei prodotti farmaceutici è riconosciuto in tutto il mondo ma attualmente ancora non sono presenti degli Standard di qualità ambientale per queste sostanze in ambiente acquatico. L’agenzia europea per i farmaci (EMEA) ha introdotto delle linee guida per la valutazione del rischio ambientale per tutti i nuovi farmaci prima di provvedere alla registrazione, ma in nessun caso la loro autorizzazione in commercio è vietata. Una volta assunti, i farmaci sono escreti dagli organismi in forma nativa o come metaboliti, e attraverso gli scarichi urbani raggiungono i depuratori che li rimuovono solo in parte. Di conseguenza, i residui dei farmaci vengono ritrovati nei fiumi, nei laghi, fino alle acque marine costiere. Anche se presenti a basse concentrazioni (ng-μg/L) nelle acque superficiali, i farmaci possono provocare effetti avversi negli organismi acquatici. Queste specie rappresentano involontari bersagli. Tuttavia molti di essi possiedono molecole target simili a quelle dell’uomo, con i quali i farmaci interagiscono per indurre gli effetti terapeutici; in questo caso i farmaci ambientali possono causare effetti specifici ma indesiderati sulla fisiologia degli animali acquatici. Le interazioni possono essere anche non specifiche perché dovute agli effetti collaterali dei farmaci, ad esempio effetti ossidativi, con potenziali conseguenze negative su vertebrati ed invertebrati. In questo lavoro sono stati valutati i potenziali effetti indotti nelle larve di orata da quattro classi di farmaci ovvero: carbamazepina (antiepilettico), ibuprofene (antinfiammatorio non steroideo), caffeina (stimolante) e novobiocina (antibiotico). In particolare, in questo lavoro si è valutato inizialmente il tasso di sopravvivenza delle larve di orata esposte ai farmaci, per verificare se l’esposizione determinasse effetti di tossicità acuta; successivamente si è passati alla valutazione di due biomarker : il danno al DNA e la perossidazione lipidica per verificare la presenza di effetti tossici sub-letali. Le larve sono state esposte per 96 ore alle concentrazioni di 0.1, 1 (MEC), 10 e 50 µg/L (>MEC) di carbamazepina e novobiocina, a 0.1, 5 (MEC),10 e 50 µg/L (> MEC) di ibuprofene ed a 0.1, 5 (MEC),15 e 50 µg/L (> MEC) di caffeina, rappresentative delle concentrazioni riscontrate in ambiente acquatico e al di sopra di quest’ultimo. L’analisi dei dati sulla sopravvivenza ha dimostrato che la carbamazepina, l’ibuprofene, la novobiocina e la caffeina non hanno effetti significativi alle concentrazioni testate. La valutazione dei biomarker ha evidenziato un generale decremento significativo dei livelli di danno primario al DNA e per la perossidazione lipidica è stato generalmente osservato un decremento alle dosi dei farmaci più basse, seguito da un aumento a quelle più elevate. Nell’insieme i dati indicano che alle concentrazioni testate, i farmaci carbamazepina, caffeina, ibuprofene e novobiocina non hanno prodotto alterazioni attribuibili alla comparsa di effetti avversi nelle larve di S. aurata dopo 96 ore di esposizione.
Resumo:
In gilthead seabream aquaculture, the feed supplies in the market is very expensive due to its high content of animal protein. In this respect, spiruline appears to be a valuable substitute to animal and vegetable protein. In this study we performed two experiments. The scope of the first one was to determine the effect of the inclusion of Spirulina platensis hydrolyzed on the physiological state and growth in juveniles of Sparus aurata. A total of 180 individuals were fed for 128 days with three different feeds: control diet, diet with 2% of hydrolyzed microalgae (Sp2), and diet with 4% of hydrolyzed microalgae (Sp4).The experimental groups were tested in triplicate (except control group that was in duplicate). Biometric parameters were registered every two or three weeks. At the end of the experiment blood samples were collected to analyze plasma metabolites. After this we tried to evaluate the anti-oxidant response in animals remained from the first experiment using a toxicological assay with sodium nitrite lasting three days. Fish were divided into control, Spi 2% and Spi 4%, all them with and without NaNO2. Even then, the plasma metabolites data were collected after 24h and 72h. At the end of the first experiment the administration of S. platensis appeared to have a negative impact on growth of S. aurata respect the control feed. Furthermore, the lactate content registered showed a significant difference between the control and the spiruline administration. In the second experiment the spiruline feed showed a glucose and a lactate content with significant differences after 72h of exposition to nitrites respect the control group due to the interaction between nitrites and treatment. S. platensis hydrolyzed 2% and 4% do not seems a good substitution for S. aurata both as a growth enhancer and improver of health metabolic pathways. Its role as a good antioxidant has not been confirmed in these experiments.
Resumo:
The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets.
Resumo:
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Resumo:
Alanine aminotransferase (ALT) plays an important role in amino acid metabolism and gluconeogenesis. The preference of carnivorous fish for protein amino acids instead of carbohydrates as a source of energy lead us to study the transcriptional regulation of the mitochondrial ALT (mALT) gene and to characterize the enzyme kinetics and modulation of mALT expression in the kidney of gilthead sea bream (Sparus aurata) under different nutritional and hormonal conditions. 5′-Deletion analysis of mALT promoter in transiently transfected HEK293 cells, site-directed mutagenesis and electrophoretic mobility shift assays allowed us to identify HNF4α as a new factor involved in the transcriptional regulation of mALT expression. Quantitative RT-PCR assays showed that starvation and the administration of streptozotocin (STZ) decreased HNF4α levels in the kidney of S. aurata, leading to the downregulation of mALT transcription. Analysis of the tissue distribution showed that kidney, liver, and intestine were the tissues with higher mALT and HNF4α expression. Kinetic analysis indicates that mALT enzyme is more efficient in catalyzing the conversion of L-alanine to pyruvate than the reverse reaction. From these results, we conclude that HNF4α transactivates the mALT promoter and that the low levels of mALT expression found in the kidney of starved and STZ-treated fish result from a decreased expression of HNF4α. Our findings suggest that the mALT isoenzyme plays a major role in oxidazing dietary amino acids, and points to ALT as a target for a biotechnological action to spare protein and optimize the use of dietary nutrients for fish culture.
Resumo:
Sparus aurata larvae reared under controlled water-temperature conditions during the first 24 days after hatching displayed a linear relationship between age (t) and standard length (SL): SL = 2.68 + 0.19 t (r2 = 0.91l). Increments were laid down in the sagittae with daily periodicity starting on day of hatching. Standard length (SL) and sagittae radius (OR) were correlated: SL(mm) = 2.65 + 0.012 OR(mm). The series of measurements of daily growth increment widths (DWI), food density and water temperature were analyzed by means of time series analysis. The DWI series were strongly autocorrelated, the growth on any one day was dependent upon growth on the previous day. Time series of water temperatures showed, as expected, a random pattern of variation, while food consumed daily was a function of food consumed the two previous days. The DWI series and the food density were correlated positively at lags 1 and 2. The results provided evidence of the importance of food intake upon the sagittae growth when temperature is optimal (20ºC). Sagittae growth was correlated with growth on the previous day, so this should be taken into account when fish growth is derived from sagittae growth rates.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
In this study, it was aimed to determine the effect of sea bream (Sparus aurata) marinated some quality properties during cold storage. The fillets of fish were immersed into brine including 3.5% acetic acid 11% salt in the ratio of 1: 1.5 (fish: marinate brine) for marination process. After the process of ripening, samples were grouped into two and packed in plastic containers; one being plain (in sunflower oil) and the other being sauced (sauced prepared with sunflower oil). During storage, sensory, crude protein, lipid, dry matter and crude ash, TBA, TVB-N, TMA-N and peroxide analyses were done periodically. According to results of 200 days of storage, TVB-N values of sea bream marinates packaged as plain and sauced were 15.86/14.89 mg/100g, TBA 7.06/7.99 mg MA/kg, TMA-N 2.97/3.12, mg/100g, the value of peroxide was 7.23/7.45 meq/kg respectively. According to chemical and sensory analyses results obtained in the study; it was concluded that sea bream marinates packaged as plain and sauced can be stored in +4 °C for 200 days.