995 resultados para SCHWANN-CELLS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traumatic injuries resulting in peripheral nerve lesions often require a graft to bridge the gap. Although autologous nerve auto-graft is still the first-choice strategy in reconstructions, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to create a favourable environment for nerve regeneration. We decided to test new fibrin nerve conduits seeded with various cell types (primary Schwann cells and adult stem cells differentiated to a Schwann cell-like phenotype) for repair of sciatic nerve injury. Two weeks after implantation, the conduits were removed and examined by immunohistochemistry for axonal regeneration (evaluated by PGP 9.5 expression) and Schwann cell presence (detected by S100 expression). The results show a significant increase in axonal regeneration in the group of fibrin seeded with Schwann cells compared with the empty fibrin conduit. Differentiated adipose-derived stem cells also enhanced regeneration distance in a similar manner to differentiated bone marrow mesenchymal stem cells. These observations suggest that adipose-derived stem cells may provide an effective cell population, without the limitations of the donor-site morbidity associated with isolation of Schwann cells, and could be a clinically translatable route towards new methods to enhance peripheral nerve repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous clinical observations and data from mouse models with defects in lipid metabolism suggested that epineurial adipocytes may play a role in peripheral nervous system myelination. We have used adipocyte-specific Lpin1 knockout mice to characterize the consequences of the presence of impaired epineurial adipocytes on the myelinating peripheral nerve. Our data revealed that the capacity of Schwann cells to establish myelin, and the functional properties of peripheral nerves, were not affected by compromised epineurial adipocytes in adipocyte-specific Lpin1 knockout mice. To evaluate the possibility that Lpin1-negative adipocytes are still able to support endoneurial Schwann cells, we also characterized sciatic nerves from mice carrying epiblast-specific deletion of peroxisome proliferator-activated receptor gamma, which develop general lipoatrophy. Interestingly, even the complete loss of adipocytes in the epineurium of peroxisome proliferator-activated receptor gamma knockout mice did not lead to detectable defects in Schwann cell myelination. However, probably as a consequence of their hyperglycemia, these mice have reduced nerve conduction velocity, thus mimicking the phenotype observed under diabetic condition. Together, our data indicate that while adipocytes, as regulators of lipid and glucose homeostasis, play a role in nerve function, their presence in epineurium is not essential for establishment or maintenance of proper myelin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Collagen nerve guides are used clinically for peripheral nerve defects, but their use is generally limited to lesions up to 3 cm. In this study we combined collagen conduits with cells as an alternative strategy to support nerve regeneration over longer gaps. In vitro cell adherence to collagen conduits (NeuraGen(®) nerve guides) was assessed by scanning electron microscopy. For in vivo experiments, conduits were seeded with either Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC) or left empty (control group), conduits were used to bridge a 1cm gap in the rat sciatic nerve and after 2-weeks immunohistochemical analysis was performed to assess axonal regeneration and SC infiltration. The regenerative cells showed good adherence to the collagen walls. Primary SC showed significant improvement in distal stump sprouting. No significant differences in proximal regeneration distances were noticed among experimental groups. dMSC and dASC-loaded conduits showed a diffuse sprouting pattern, while SC-loaded showed an enhanced cone pattern and a typical sprouting along the conduits walls, suggesting an increased affinity for the collagen type I fibrillar structure. NeuraGen(®) guides showed high affinity of regenerative cells and could be used as efficient vehicle for cell delivery. However, surface modifications (e.g. with extracellular matrix molecule peptides) of NeuraGen(®) guides could be used in future tissue-engineering applications to better exploit the cell potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regulation of gene expression in Schwann cells may be determined, at least in part, by the interaction of these cells with axons. Two peripheral nerve tumors, neurofibroma and schwannoma, represent good tools for studying Schwann cell activity in the presence or absence of axon action. In the present work we studied the expression of triiodothyronine receptors (T3R) by Schwann cells in these two tumors and also in adult normal sciatic nerve. Confirming the results of the histological examination, immunostaining of the neurofilaments showed the presence of fascicles or scattered axons in all neurofibroma sections studied. In these neurofibromas, Schwann cells did not express T3R immunoreactivity. Furthermore, in adult normal sciatic nerve, Schwann cells which ensheathed axons were devoid of any T3R expression. In contrast, in schwannoma, the complete absence of axons was demonstrated by the lack of neurofilament immunostaining. Here, Schwann cells deprived of axonal interaction displayed clear T3R immunoreactivity. In schwannoma cell cultures, Schwann cells continued to express T3R, even in cultures treated with medium that had been conditioned with rat sensory neurons. On the basis of these results, we suggest that, beside the possible regulatory mechanisms for T3R, the synthesis of T3R is regulated, at least in part, by Schwann cell-axon interaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thyroid hormones, which play an important role in the development and regeneration of the nervous system, require the presence of specific nuclear T3 receptors (NT3R). In this study we provide evidence that NT3R expression by Schwann cells was up-regulated in response to a loss of axonal contact in vitro and in vivo. In dorsal root ganglia explant cultures, Schwann cells which accompanied axons (nerve fibres) were devoid of NT3R. When Schwann cells were orphaned from axon contact by axon transection, all the nuclei of these cells displayed NT3R immunoreactivity. Similar results were obtained in situ; in adult rat sciatic nerve, Schwann cells which ensheathed healthy axons never expressed NT3R immunoreactivity. After sciatic nerve transection in vivo the nuclei of Schwann cells deprived of axonal contact displayed a clear NT3R immunoreaction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many strategies have been investigated to provide an ideal substitute to treat a nerve gap injury. Initially, silicone conduits were used and more recently conduits fabricated from natural materials such as poly-3-hydroxybutyrate (PHB) showed good results but still have their limitations. Surgically, a new concept optimising harvested autologous nerve graft has been introduced as the single fascicle method. It has been shown that a single fascicle repair of nerve grafting is successful. We investigated a new approach using a PHB strip seeded with Schwann cells to mimic a small nerve fascicle. Schwann cells were attached to the PHB strip using diluted fibrin glue and used to bridge a 10-mm sciatic nerve gap in rats. Comparison was made with a group using conventional PHB conduit tubes filled with Schwann cells and fibrin glue. After 2 weeks, the nerve samples were harvested and investigated for axonal and Schwann cell markers. PGP9.5 immunohistochemistry showed a superior nerve regeneration distance in the PHB strip group versus the PHB tube group (> 10 mm, crossed versus 3.17+/- 0.32 mm respectively, P<0.05) as well as superior Schwann cell intrusion (S100 staining) from proximal (> 10 mm, crossed versus 3.40+/- 0.36 mm, P<0.01) and distal (> 10 mm, crossed versus 2.91+/- 0.31 mm, P<0.001) ends. These findings suggest a significant advantage of a strip in rapidly connecting a nerve gap lesion and imply that single fascicle nerve grafting is advantageous for nerve repair in rats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optimal seeding of a nerve conduit with cells is a core problem in tissue engineering of constructing an artificial nerve substitute to gap lesions in the peripheral nerve system. An ideal nerve gap substitute would have to present an equally distributed number of cells that can activate the regrowing axons. This work shows a new in vitro technique of two-step seeding of cells inside a conduit and on layered mats that allows a valuable targeting of the cells and a proven survival in the environment of poly-3-hydroxybutyrate (PHB) conduits. The technique uses two components of diluted fibrin glue Tisseel. Initially, the chosen area on the mat was coated with thrombin followed from the seeding of a fibrinogen-cell compound. Using Sprague Dawley rat cells, we could demonstrate with immunohistochemistry (S100, DAPI) techniques that undifferentiated (uMSC) and Schwann cells (SC) mimicking differentiated mesenchymal stem cells (dMSC) as well as SC can be suspended and targeted significantly better in dissolvable diluted fibrin glue than in growth medium. Analysis showed significantly better values for adherence (p < 0.001) and drop off (p < 0.05) from seeded cells. Using this two-step application allows the seeding of the cells to be more precise and simplifies the handling of cell transplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including c-Jun, Notch, Sox-2 and Pax-3, all usually expressed in the immature Schwann cells and suppressed at the onset of myelination. In order to identify new negative regulators of myelination involved in the development of the peripheral nervous system (PNS) we analyzed the data from a previously performed transcriptional analysis of myelinating Schwann cells. Based on its transcriptional expression profile during myelination, Sox4, a member of the Sox gene family, was identified as a potential candidate. Previous studies demonstrated that prolonged Sox4 expression in oligodendrocytes maintains these cells in a premyelinating state, further suggesting its role as a negative regulator of myelination. Concomitantly, we observed upregulation of Sox4 mRNA and protein expression levels in the PNS of three different models of demyelinating neuropathies (Pmp22, Lpin1, and Scap KOs). To better characterize the molecular function of Sox4, we used a viral vector allowing Sox4 overexpression in cultured Schwann cells and in neuron-Schwann cell co-cultures. In parallel, we generated two transgenic lines of mice in which the overexpression of Sox4 is driven specifically in Schwann cells by the Myelin Protein Zero gene promoter. The preliminary data from these in vitro and in vivo experiments show that overexpression of Sox4 in PNS causes a delay in progression of myelination thus indicating that Sox4 acts as a negative regulator of Schwann cell myelination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue engineering is a popular topic in peripheral nerve repair. Combining a nerve conduit with supporting adipose-derived cells could offer an opportunity to prevent time-consuming Schwann cell culture or the use of an autograft with its donor site morbidity and eventually improve clinical outcome. The aim of this study was to provide a broad overview over promising transplantable cells under equal experimental conditions over a long-term period. A 10-mm gap in the sciatic nerve of female Sprague-Dawley rats (7 groups of 7 animals, 8 weeks old) was bridged through a biodegradable fibrin conduit filled with rat adipose-derived stem cells (rASCs), differentiated rASCs (drASCs), human (h)ASCs from the superficial and deep abdominal layer, human stromal vascular fraction (SVF), or rat Schwann cells, respectively. As a control, we resutured a nerve segment as an autograft. Long-term evaluation was carried out after 12 weeks comprising walking track, morphometric, and MRI analyses. The sciatic functional index was calculated. Cross sections of the nerve, proximal, distal, and in between the two sutures, were analyzed for re-/myelination and axon count. Gastrocnemius muscle weights were compared. MRI proved biodegradation of the conduit. Differentiated rat ASCs performed significantly better than undifferentiated rASCs with less muscle atrophy and superior functional results. Superficial hASCs supported regeneration better than deep hASCs, in line with published in vitro data. The best regeneration potential was achieved by the drASC group when compared with other adipose tissue-derived cells. Considering the ease of procedure from harvesting to transplanting, we conclude that comparison of promising cells for nerve regeneration revealed that particularly differentiated ASCs could be a clinically translatable route toward new methods to enhance peripheral nerve repair.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le système nerveux périphérique est responsable de la transmission des impulses motrices, ainsi que de la réception des afférences sensorielles. Les lésions traumatiques des nerfs périphériques conduisent à une impotence fonctionnelle qui peut être dévastant, notamment chez les travailleurs manuels,. La récupération fonctionnelle est donc le but principal dans chirurgie des nerfs périphériques. Malheureusement, une suture directe des moignons nerveux est souvent impossible dans le contexte des traumatismes complexes qui surviennent lors des accidents. La suture nerveuse par interposition d'autogreffe reste le gold standard dans la pratique chirurgicale mais nécessite le sacrifice d'un nerf donneur, avec dysesthésie et possibles douleurs neuropathiques conséquentes. Alternativement, des guides tubulaires pour les nerfs peuvent être utilisées si le gap nerveux est inférieur à 3 cm. Plusieurs guides résorbables en collagène sont approuve en Europe et aux Etas Unis (FDA). Dans cette étude, des conduits de collagène ont été associe a des cellules régénératives (cellules souches adultes) comme stratégie supplémentaire de régénération. Une fois testé le rapport des cellules avec le biomatériau (NeuraGen® nerve guides) in vitro, une étude in vivo dans le rat a été effectuée. Les différents groupes de conduits ont été supplémentés respectivement avec Schwann cells (SC); avec cellules souches adultes dérivées de la moelle épinière, différentiées en cellules "Schwann-like" (dMSC); avec cellules souches adultes dérivées de la graisse, différentiées en cellules "Schwann-like" (dASC). Un groupe de conduits avec du milieu de culture sans cellules a été utilisé comme group control. Les conduits ont été utilisés pour combler un gap de 1cm dans un model de section totale du nerf sciatique chez le rat. Deux semaines post implantation, une analyse immuno-histochimique a été effectuée pour évaluer la régénération axonales et l'infiltration de cellules de Schwann au niveau du conduit. Les cellules ont montré une adhérence efficace aux parois de collagène. En particulier, les cellules de Schwann ont montré une amélioration significative au niveau du sprouting distale. Par contre, aucune différence significative n'a été remarquée entre les groupes pour le sprouting axonale proximal. De plus, si les cellules souches ont montré un pattern de sprouting diffus, les cellules de Schwann ont par contre garanti un cône de croissance typique, associé a une affinité remarquable pour les parois de collagène. NeuraGen® guides pourraient donc être un moyen adapté a l'association avec la thérapie cellulaire en raison de la bonne adhérence des cellules au biomatériau. Des modifications de surface dans le but d'améliorer la performance neurotrophique cellulaire in vivo (e.g. peptides de matrice extracellulaire) pourront être utilisées dans des applications futures.