984 resultados para SCALAR
Resumo:
LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.
Resumo:
The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3fb−1 of pp collisions at s√=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c-quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm—neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.
Resumo:
We summarise recent results about the evolution of linear density perturbations in scalar field cosmologies with an exponential potential. We use covariant and gauge invariant perturbation variables and a dynamical systems' approach. We establish under what conditions do the perturbations decay to the future in agreement with the cosmic no-hair conjecture.
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.
Resumo:
The scalar sector of the effective low-energy six-dimensional Kaluza-Klein theory is seen to represent an anisotropic fluid composed of two perfect fluids if the extra space metric has a Euclidean signature, or a perfect fluid of geometric strings if it has an indefinite signature. The Einstein field equations with such fluids can be explicitly integrated when the four-dimensional space-time has two commuting Killing vectors.
Resumo:
The complex structural organization of the white matter of the brain can be depicted in vivo in great detail with advanced diffusion magnetic resonance (MR) imaging schemes. Diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique-the mapping of apparent diffusion coefficient values-to the more complex, such as diffusion tensor imaging, q-ball imaging, diffusion spectrum imaging, and tractography. The type of structural information obtained differs according to the technique used. To fully understand how diffusion MR imaging works, it is helpful to be familiar with the physical principles of water diffusion in the brain and the conceptual basis of each imaging technique. Knowledge of the technique-specific requirements with regard to hardware and acquisition time, as well as the advantages, limitations, and potential interpretation pitfalls of each technique, is especially useful.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
How do plants that move and spread across landscapes become branded as weeds and thereby objects of contention and control? We outline a political ecology approach that builds on a Lefebvrian understanding of the production of space, identifying three scalar moments that make plants into 'weeds' in different spatial contexts and landscapes. The three moments are: the operational scale, which relates to empirical phenomena in nature and society; the observational scale, which defines formal concepts of these phenomena and their implicit or explicit 'biopower' across institutional and spatial categories; and the interpretive scale, which is communicated through stories and actions expressing human feelings or concerns regarding the phenomena and processes of socio-spatial change. Together, these three scalar moments interact to produce a political ecology of landscape transformation, where biophysical and socio-cultural processes of daily life encounter formal categories and modes of control as well as emotive and normative expectations in shaping landscapes. Using three exemplar 'weeds' - acacia, lantana and ambrosia - our political ecology approach to landscape transformations shows that weeds do not act alone and that invasives are not inherently bad organisms. Humans and weeds go together; plants take advantage of spaces and opportunities that we create. Human desires for preserving certain social values in landscapes in contradiction to actual transformations is often at the heart of definitions of and conflicts over weeds or invasives.
Resumo:
This thesis deals with some aspects of the Physics of the early universe, like phase transitions, bubble nucleations and premodial density perturbations which lead to the formation structures in the universe. Quantum aspects of the gravitational interaction play an essential role in retical high-energy physics. The questions of the quantum gravity are naturally connected with early universe and Grand Unification Theories. In spite of numerous efforts, the various problems of quantum gravity remain still unsolved. In this condition, the consideration of different quantum gravity models is an inevitable stage to study the quantum aspects of gravitational interaction. The important role of gravitationally coupled scalar field in the physics of the early universe is discussed in this thesis. The study shows that the scalar-gravitational coupling and the scalar curvature did play a crucial role in determining the nature of phase transitions that took place in the early universe. The key idea in studying the formation structure in the universe is that of gravitational instability.
Resumo:
This thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and thThis thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and the details of fabrication ofe details of fabrication of the new simulated scalar feed are described. The method of measurements of radiation characteristics of the antenna are also explained in this chapter. In the fourth chapter the outcome of the experimental results of the investigations carried out on horn antennas fabricated with different physical dimensions and different parameters for the E—plane boundary walls are highlighted. The theoretical explanation used to explain the experimental results is given in the fifth chapter of the thesis. A comparison between the experimental and the theoretical results is also presented in this chapter. In chapter six, the conclusions drawn from the experimental as well as the theoretical investigations are discussed. The advantages and features of the newly developed simulated scalar feed is examined in this chapter. Scope of further investigations in this field is also discussed at the end of this chapter.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.