1000 resultados para SBSE-HLLME-GS-MS
Resumo:
Indiscriminate and inappropriate use of pesticides in agriculture has been pointed out for increasing health problems and environmental damage. Considering that water resources are the principal destiny of those compounds after application, the present study presents optimization and validation of two simple and effi cient analytical methods for pesticides quantifi cation in both surface and groundwater. Were selected the pesticides more commonly used at Dourados (MS - Brazil), region with intense agricultural activity. Pesticides were preconcentrated by solid-phase extraction using C18 (500 mg) cartridges and then divided in two groups for elution and quantifi cation: 2.4-D and 2.4-DCP were eluted with methanol and quantifi ed by high performance liquid chromatography with ultra-violet detector (HPLC-UV) while atrazine, DIA, DEA, trifl uralin and methyl parathion were eluted with ethylacetate (1:1, v/v) and quantifi ed by gas chromatography with thermionic specifi c detector (GC-TSD). The methods showed satisfactory accuracy (76-107%) and precision (<12%) for the substances analyzed at the fortifi ed levels selected for the study, except for DIA (<51%). Study of pesticide stability also presented good results: C18 cartridges could be stored for at least for 21 days at -20ºC with no signs of the compounds degradability. Both methods limits of quantifi cation of the pesticides (0.22 - 0.48 μg L-1) are in accordance to the levels currently established by the Brazilian national legislation for pesticides in water. Although only the pesticide 2.4-D has been detected in two distinct collection points in the study period of time, this work warns for the requirement of systematical analysis of pesticides presence in water destined to human consume, principally in areas of intense agriculture activity. Such monitoring can provide subsidies for public environmental policies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A methodology to analyze organochlorine pesticides (OCPs) in water samples has been accomplished by using headspace stir bar sorptive extraction (HS-SBSE). The bars were in house coated with a thick film of PDMS in order to properly work in the headspace mode. Sampling was done by a novel HS-SBSE system whereas the analysis was performed by capillary GC coupled mass spectrometric detection (HS-SBSE-GC-MS). The extraction optimization, using different experimental parameters has been established by a standard equilibrium time of 120 min at 85 degrees C. A mixture of ACN/toluene as back extraction solvent promoted a good performance to remove the OCPs sorbed in the bar. Reproducibility between 2.1 and 14.8% and linearity between 0.96 and 1.0 were obtained for pesticides spiked in a linear range between 5 and 17 ng/g in water samples during the bar evaluation.
Resumo:
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.
Resumo:
Vorbesitzer: Freiherrlich Carl von Rothschild'sche Bibliothek Frankfurt am Main; alte Signatur: Gs 215/300; Akzessionsnummer: 19195
Resumo:
No Brasil o biodiesel é utilizado em misturas com óleo diesel em proporções de 5%, sem que haja modificações nos motores. Com o intuito de diversificar a utilização de oleaginosas não comestíveis no ramo dos biocombustíveis, e ainda vincular a produção com agricultura sustentável, uma alternativa para o RS é a utilização do óleo de tungue para a produção de biodiesel. A caracterização e quantificação de ácidos graxos do biodiesel de tungue, torna-se importante devido à seu exclusivo perfil graxo. Neste trabalho, foi estudado o desenvolvimento e validação de método para a determinação do perfil graxo do biodiesel metílico de tungue e blendas com soja utilizando GC-MS. Os parâmetros de validação considerados foram: curva analítica, linearidade, seletividade, limite de detecção e quantificação, robustez, precisão e exatidão. Para determinar as melhores condições cromatográficas, foram testadas diferentes programações de temperatura no forno cromatográfico; fluxo de gás; temperatura do injetor, detector e interface; e modo de injeção. As condições do GCMS após a otimização foram: injeção de 1 µL com injeção em alta pressão (300 kPa), T do injetor: 250 ºC, injeção split 1:30, fluxo de 1 mL min-1, coluna Rtx-5MS com dimensões 30 m x 0,25 mm x 0,25 µm, T forno: isoterma de 2 min a 130 ºC, aumento de 20 ºC/min até 220 ºC, aumento de 0,5ºC/min até 223ºC, aumento de 7 ºC/min até 250 ºC e isoterma em 250 ºC por 3 min, resultando em 20 min de análise. A temperatura da fonte e interface foram de 200 ºC e 250 ºC, respectivamente, com o MS no modo full scan, ionização por impacto eletrônico a 70 eV, e intervalo de massas de 30 a 500 u.m.a. A identificação do α-eleosteárico foi baseada na fragmentação característica do composto, pela comparação com o espectro do ácido linolênico, e ainda pelo tempo de retenção do composto. Na validação, as curvas analíticas apresentaram valores de r maiores que 0,99. O LD e LQ foram adequados, permitindo a quantificação de ésteres na concentração mínima de 0,6%. Os valores de exatidão ficaram entre 86 e 117%, com RSD% menores que 8%. O efeito matriz também foi avaliado, sendo que esse efeito foi considerado médio para a maioria dos compostos, ficando entre ± 20 e 50%. Durante a aplicação do método, o mesmo se mostrou adequado para amostras de biodiesel metílico de tungue e blendas com soja, nas proporções de 15:85, 20:80 e 25:75 (T:S, v/v). A aplicabilidade do método também foi testada para o biodiesel de soja, obtendo resultados satisfatórios, mostrando-se assim, além de tudo, ser um método robusto.
Resumo:
With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology
Resumo:
Knowledge of the major effects governing desorption/ionization efficiency is required for the development and application of ambient mass spectrometry. Although all triacylglycerols (TAG) have the same favorable protonation and cationization sites, their desorption/ionization efficiencies can vary dramatically during easy ambient sonic-spray ionization because of structural differences in the carbon chain. To quantify this somewhat surprising and drastic effect, we have performed a systematic investigation of desorption/ionization efficiencies as a function of unsaturation and length for TAG as well as for diacylglycerols, monoacylglycerols and several phospholipids (PL). Affinities for Na(+) as a function of unsaturation level have also been assayed via comprehensive metadynamics calculations to understand the influence of this phenomenon on the ionization efficiency. The results suggest that dipole-dipole interactions within a carbon chain tuned by unsaturation sites govern ionization efficiency of TAG and PL.
Resumo:
Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.
Resumo:
We describe herein a general method for the controlled Heck arylation of allylated malonates. Both electron-rich and electron-poor aryldiazonium salts were readily employed as the aryl-transfer agents in good yields and in high chemo-, regio-, and stereoselectivity without formation of decarboxylated byproducts. Reaction monitoring via ESI-MS was used to support the formation of chelated Pd species through the catalytic cycle. Additionally, some Heck adducts were successfully used in the total synthesis of pharmacologically active γ-lactones.
Resumo:
New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, 1H-NMR and 15N-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+)-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr) reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.
Resumo:
Reports of long-term tenofovir disoproxil fumarate (TDF) treatment in HIV-infected adolescents are limited. We present final results from the open-label (OL) TDF extension following the randomized, placebo (PBO)-controlled, double-blind phase of GS-US-104-0321 (Study 321). HIV-infected 12- to 17-year-olds treated with TDF 300 mg or PBO with an optimized background regimen (OBR) for 24-48 weeks subsequently received OL TDF plus OBR in a single arm study extension. HIV-1 RNA and safety, including bone mineral density (BMD), was assessed in all TDF recipients. Eighty-one subjects received TDF (median duration 96 weeks). No subject died or discontinued OL TDF for safety/tolerability. At week 144, proportions with HIV-1 RNA <50 copies/mL were 30.4% (7 of 23 subjects with baseline HIV-1 RNA >1000 c/mL initially randomized to TDF), 41.7% (5 of 12 subjects with HIV-1 RNA <1000 c/mL who switched PBO to TDF) and 0% (0 of 2 subjects failed randomized PBO plus OBR with HIV-1 RNA >1000 c/mL and switched PBO to TDF). Viral resistance to TDF occurred in 1 subject. At week 144, median decrease in estimated glomerular filtration rate was 38.1 mL/min/1.73 m (n = 25). Increases in median spine (+12.70%, n = 26) and total body less head BMD (+4.32%, n = 26) and height-age adjusted Z-scores (n = 21; +0.457 for spine, +0.152 for total body less head) were observed at week 144. Five of 81 subjects (6%) had persistent >4% BMD decreases from baseline. Some subjects had virologic responses to TDF plus OBR, and TDF resistance was rare. TDF was well tolerated and can be considered for treatment of HIV-infected adolescents.
Resumo:
Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.
Resumo:
Although Brazil is the third largest fruit producer in the world, several specimens consumed are not well studied from the chemical viewpoint, especially for quantitative analysis. For this reason and the crescent employment of mass spectrometry (MS) techniques in food science we selected twenty-two phenolic compounds with important biological activities and developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method using electrospray (ESI) in negative ion mode aiming their quantification in largely consumed Brazilian fruits (açaí-do-Amazonas, acerola, cashew apple, camu-camu, pineapple and taperebá). Multiple reaction monitoring (MRM) was applied and the selection of proper product ions for each transition assured high selectivity. Linearity (0.995
Resumo:
4