938 resultados para SACCADIC EYE MOVEMENT
Resumo:
Primary Objective: To investigate the utility of using a new method of assessment for deficits in selective visual attention (SVA). Methods and Procedures: An independent groups design compared six participants with brain injuries with six participants from a non-brain injured control group. The Sensomotoric Instruments Eye Movement system with remote eye-tracking device (eye camera), and 2 sets of eight stimuli were employed to determine if the camera would be a sensitive discriminator of SVA in these groups. Main Outcomes and Results: The attention profile displayed by the brain injured group showed that they were slower, made more errors, were less accurate, and more indecisive than the control group. Conclusions: The utility of eye movement analysis as an assessment method was established, with implications for rehabilitation requiring further development. Key words: selective visual attention, eye movement analysis, brain injury
Resumo:
This opportune case study describes visual and stepping behaviours of an 87 year old female (P8), both prior to, and following two falls. Before falling, when asked to walk along a path containing two stepping guides positioned before and after an obstacle, P8 generally visually fixated the first stepping guide until after foot contact inside it. However, after falling P8 consistently looked away from the stepping guide before completing the step into it in order to fixate the upcoming obstacle in her path. The timing of gaze redirection away from the target (in relation to foot contact inside it) correlated with absolute stepping error. No differences in eyesight, cognitive function, or balance were found between pre- and post-fall recordings. However, P8 did report large increases in fall-related anxiety and reduced balance confidence, supporting previously suggested links between anxiety/increased fear or falling and maladaptive visual/stepping behaviours. The results represent a novel insight into how psychological and related behavioural factors can change in older adults following a fall, and provide a possible partial rationalisation for why recent fallers are more likely to fall again in the following 12 months. These findings highlight novel possibilities for falls prevention and rehabilitation.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le trouble comportemental en sommeil paradoxal (TCSP) idiopathique est caractérisé par une activité motrice indésirable et souvent violente au cours du sommeil paradoxal. Le TCSP idiopathique est considéré comme un facteur de risque de certaines maladies neurodégénératives, particulièrement la maladie de Parkinson (MP) et la démence à corps de Lewy (DCL). La dépression et les troubles anxieux sont fréquents dans la MP et la DCL. L’objectif de cette étude est d’évaluer la sévérité des symptômes dépressifs et anxieux dans le TCSP idiopathique. Cinquante-cinq patients avec un TCSP idiopathique sans démence ni maladie neurologique et 63 sujets contrôles ont complété la seconde édition du Beck Depression Inventory (BDI-II) et le Beck Anxiety Inventory (BAI). Nous avons aussi utilisé le BDI for Primary Care (BDI-PC) afin de minimiser la contribution des facteurs confondant dans les symptômes dépressifs. Les patients avec un TCSP idiopathique ont obtenu des scores plus élevés que les sujets contrôles au BDI-II (9.63 ± 6.61 vs. 4.32 ± 4.58; P < 0.001), au BDI-PC (2.20 ± 2.29 vs. 0.98 ± 1.53; P = 0.001) et au BAI (8.37 ± 7.30 vs. 3.92 ± 5.26; P < 0.001). Nous avons également trouvé une proportion plus élevée des sujets ayant des symptômes dépressifs (4/63 ou 6% vs. 12/55 ou 22%; P = 0.03) ou anxieux (9/50 or 18% vs. 21/43 ou 49%; P = 0.003) cliniquement significatifs. La proportion des sujets ayant des symptômes dépressifs cliniquement significatifs ne change pas en utilisant le BDI-PC (11/55 or 20%) Les symptômes dépressifs et anxieux sont fréquents dans le TCSP idiopathique. L’examen de routine des patients avec un TCSP idiopathique devrait inclure un dépistage systématique des symptômes dépressifs et anxieux afin de les prévenir ou les traiter.
Resumo:
Do we view the world differently if it is described to us in figurative rather than literal terms? An answer to this question would reveal something about both the conceptual representation of figurative language and the scope of top-down influences oil scene perception. Previous work has shown that participants will look longer at a path region of a picture when it is described with a type of figurative language called fictive motion (The road goes through the desert) rather than without (The road is in the desert). The current experiment provided evidence that such fictive motion descriptions affect eye movements by evoking mental representations of motion. If participants heard contextual information that would hinder actual motion, it influenced how they viewed a picture when it was described with fictive motion. Inspection times and eye movements scanning along the path increased during fictive motion descriptions when the terrain was first described as difficult (The desert is hilly) as compared to easy (The desert is flat); there were no such effects for descriptions without fictive motion. It is argued that fictive motion evokes a mental simulation of motion that is immediately integrated with visual processing, and hence figurative language can have a distinct effect on perception. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.
Resumo:
Models of perceptual decision making often assume that sensory evidence is accumulated over time in favor of the various possible decisions, until the evidence in favor of one of them outweighs the evidence for the others. Saccadic eye movements are among the most frequent perceptual decisions that the human brain performs. We used stochastic visual stimuli to identify the temporal impulse response underlying saccadic eye movement decisions. Observers performed a contrast search task, with temporal variability in the visual signals. In experiment 1, we derived the temporal filter observers used to integrate the visual information. The integration window was restricted to the first similar to 100 ms after display onset. In experiment 2, we showed that observers cannot perform the task if there is no useful information to distinguish the target from the distractor within this time epoch. We conclude that (1) observers did not integrate sensory evidence up to a criterion level, (2) observers did not integrate visual information up to the start of the saccadic dead time, and (3) variability in saccade latency does not correspond to variability in the visual integration period. Instead, our results support a temporal filter model of saccadic decision making. The temporal impulse response identified by our methods corresponds well with estimates of integration times of V1 output neurons.
Resumo:
Consistent with a negativity bias account, neuroscientific and behavioral evidence demonstrates modulation of even early sensory processes by unpleasant, potentially threat-relevant information. The aim of this research is to assess the extent to which pleasant and unpleasant visual stimuli presented extrafoveally capture attention and impact eye movement control. We report an experiment examining deviations in saccade metrics in the presence of emotional image distractors that are close to a nonemotional target. We additionally manipulate the saccade latency to test when the emotional distractor has its biggest impact on oculomotor control. The results demonstrate that saccade landing position was pulled toward unpleasant distractors, and that this pull was due to the quick saccade responses. Overall, these findings support a negativity bias account of early attentional control and call for the need to consider the time course of motivated attention when affect is implicit
Resumo:
It has been suggested that the evidence used to support a decision to move our eyes and the confidence we have in that decision are derived from a common source. Alternatively, confidence may be based on further post-decisional processes. In three experiments we examined this. In Experiment 1, participants chose between two targets on the basis of varying levels of evidence (i.e., the direction of motion coherence in a Random-Dot-Kinematogram). They indicated this choice by making a saccade to one of two targets and then indicated their confidence. Saccade trajectory deviation was taken as a measure of the inhibition of the non-selected target. We found that as evidence increased so did confidence and deviations of saccade trajectory away from the non-selected target. However, a correlational analysis suggested they were not related. In Experiment 2 an option to opt-out of the choice was offered on some trials if choice proved too difficult. In this way we isolated trials on which confidence in target selection was high (i.e., when the option to opt-out was available but not taken). Again saccade trajectory deviations were found not to differ in relation to confidence. In Experiment 3 we directly manipulated confidence, such that participants had high or low task confidence. They showed no differences in saccade trajectory deviations. These results support post-decisional accounts of confidence: evidence supporting the decision to move the eyes is reflected in saccade control, but the confidence that we have in that choice is subject to further post-decisional processes.
Resumo:
Compared to skilled adult readers, children typically make more fixations that are longer in duration, shorter saccades, and more regressions, thus reading more slowly (Blythe & Joseph, 2011). Recent attempts to understand the reasons for these differences have discovered some similarities (e.g., children and adults target their saccades similarly; Joseph, Liversedge, Blythe, White, & Rayner, 2009) and some differences (e.g., children’s fixation durations are more affected by lexical variables; Blythe, Liversedge, Joseph, White, & Rayner, 2009) that have yet to be explained. In this article, the E-Z Reader model of eye-movement control in reading (Reichle, 2011; Reichle, Pollatsek, Fisher, & Rayner, 1998) is used to simulate various eye-movement phenomena in adults versus children in order to evaluate hypotheses about the concurrent development of reading skill and eye-movement behavior. These simulations suggest that the primary difference between children and adults is their rate of lexical processing, and that different rates of (post-lexical) language processing may also contribute to some phenomena (e.g., children’s slower detection of semantic anomalies; Joseph et al., 2008). The theoretical implications of this hypothesis are discussed, including possible alternative accounts of these developmental changes, how reading skill and eye movements change across the entire lifespan (e.g., college-aged vs. elderly readers), and individual differences in reading ability.
Resumo:
We investigated the processes of how adult readers evaluate and revise their situation model during reading by monitoring their eye movements as they read narrative texts and subsequent critical sentences. In each narrative text, a short introduction primed a knowledge-based inference, followed by a target concept that was either expected (e.g., “oven”) or unexpected (e.g., “grill”) in relation to the inferred concept. Eye movements showed that readers detected a mismatch between the new unexpected information and their prior interpretation, confirming their ability to evaluate inferential information. Just below the narrative text, a critical sentence included a target word that was either congruent (e.g., “roasted”) or incongruent (e.g., “barbecued”) with the expected but not the unexpected concept. Readers spent less time reading the congruent than the incongruent target word, reflecting the facilitation of prior information. In addition, when the unexpected (but not expected) concept had been presented, participants with lower verbal (but not visuospatial) working memory span exhibited longer reading times and made more regressions (from the critical sentence to previous information) on encountering congruent information, indicating difficulty in inhibiting their initial incorrect interpretation and revising their situation model
Resumo:
A study of eye movements during simulated travel toward a grove of four stationary trees revealed that observers looked most at pairs of trees that converged or decelerated apart. Such pairs specify that one's direction of travel, called heading, is to the outside of the near member of the pair. Observers looked at these trees more than those that accelerated apart; such pairs do not offer trustworthy heading information. Observers also looked at gaps between trees less often when they converged or diverged apart, and heading can never be between such pairs. Heading responses were in accord with eye movements. In general, if observers responded accurately, they had looked at trees that converged or decelerated apart; if they were inaccurate, they had not. Results support the notion that observers seek out their heading through eye movements, saccading to and fixating on the most informative locations in the field of view.
Resumo:
Saccadic eye movements have been shown to affect posture by decreasing the magnitude of body sway in young adults. However, there is no evidence of how the search for visual information that occurs during eye movements affects postural control in older adults. The purpose of the present study was to determine the influence of saccadic eye movements on postural control in older adults while they stood on 2 different bases of support. Twelve older adults stood upright in 70-s trials under 2 stance conditions (wide and narrow) and 3 gaze conditions (fixation, saccadic eye movements at 0.5 Hz, and saccadic eye movements at 1.1 Hz). Head and trunk sway amplitude and mean sway frequency were measured in both the anterior/posterior (AP) and medial/lateral (ML) directions. The results showed that the amplitude of body sway was reduced during saccades compared with fixation, as previously observed in young adults. However, older adults exhibited similar sway amplitude and frequency in the AP direction under the wide and narrow stance conditions, which is different from observations in young adults, who display larger sway in a narrow stance compared with a wide stance while performing saccades. These results suggest that although older adults are affected by saccadic eye movements by a decrease in the amplitude of body sway, as observed in young adults, they present a more rigid postural control strategy that does not allow larger sway during a more challenging stance condition.
Resumo:
The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.
Resumo:
New treatment options for Niemann-Pick Type C (NPC) have recently become available. To assess the efficiency and efficacy of these new treatment markers for disease status and progression are needed. Both the diagnosis and the monitoring of disease progression are challenging and mostly rely on clinical impression and functional testing of horizontal eye movements. Diffusion tensor imaging (DTI) provides information about the microintegrity especially of white matter. We show here in a case report how DTI and measures derived from this imaging method can serve as adjunct quantitative markers for disease management in Niemann-Pick Type C. Two approaches are taken--first, we compare the fractional anisotropy (FA) in the white matter globally between a 29-year-old NPC patient and 18 healthy age-matched controls and show the remarkable difference in FA relatively early in the course of the disease. Second, a voxelwise comparison of FA values reveals where white matter integrity is compromised locally and demonstrate an individualized analysis of FA changes before and after 1year of treatment with Miglustat. This method might be useful in future treatment trials for NPC to assess treatment effects.