932 resultados para Ruiz de Alarcón


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on maximum likelihood estimation (MLE) with the expectation maximization (EM) algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. The benchmark structure is a four-story, two-bay by two-bay steel-frame scale model structure built in the Earthquake Engineering Research Laboratory at the University of British Columbia, Canada. This paper focuses on Phase I of the analytical benchmark studies. A MATLAB-based finite element analysis code obtained from the IASC-ASCE SHM Task Group web site is used to calculate the dynamic response of the prototype structure. A number of 100 simulations have been made using this MATLAB-based finite element analysis code in order to evaluate the proposed identification method. There are several techniques to realize system identification. In this work, stochastic subspace identification (SSI)method has been used for comparison. SSI identification method is a well known method and computes accurate estimates of the modal parameters. The principles of the SSI identification method has been introduced in the paper and next the proposed MLE with EM algorithm has been explained in detail. The advantages of the proposed structural identification method can be summarized as follows: (i) the method is based on maximum likelihood, that implies minimum variance estimates; (ii) EM is a computational simpler estimation procedure than other optimization algorithms; (iii) estimate more parameters than SSI, and these estimates are accurate. On the contrary, the main disadvantages of the method are: (i) EM algorithm is an iterative procedure and it consumes time until convergence is reached; and (ii) this method needs starting values for the parameters. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using both the SSI method and the proposed MLE + EM method. The numerical results show that the proposed method identifies eigenfrequencies, damping ratios and mode shapes reasonably well even in the presence of 10% measurement noises. These modal parameters are more accurate than the SSI estimated modal parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computing the modal parameters of structural systems often requires processing data from multiple non-simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors, which are fixed for all measurements, while the other sensors change their position from one setup to the next. One possibility is to process the setups separately resulting in different modal parameter estimates for each setup. Then, the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global mode shapes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a new state space model that processes all setups at once. The result is that the global mode shapes are obtained automatically, and only a value for the natural frequency and damping ratio of each mode is estimated. We also investigate the estimation of this model using maximum likelihood and the Expectation Maximization algorithm, and apply this technique to simulated and measured data corresponding to different structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Operational Modal Analysis of structures we often have multiple time history records of vibrations measured at different time instants. This work presents a procedure for estimating the modal parameters of the structure processing all the records, that is, using all available information to obtain a single estimate of the modal parameters. The method uses Maximum Likelihood Estimation and the Expectation Maximization algorithm. Finally, it has been applied to various problems for both simulated and real structures and the results show the advantage of the joint analysis proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm. The effectiveness of this structural identification method is evaluated through numerical simulation in the context of the ASCE benchmark problem on structural health monitoring. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the benchmark structure have been estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates all the modal parameters reasonably well in the presence of 30% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a time-domain stochastic system identification method based on Maximum Likelihood Estimation and the Expectation Maximization algorithm that is applied to the estimation of modal parameters from system input and output data. The effectiveness of this structural identification method is evaluated through numerical simulation. Modal parameters (eigenfrequencies, damping ratios and mode shapes) of the simulated structure are estimated applying the proposed identification method to a set of 100 simulated cases. The numerical results show that the proposed method estimates the modal parameters with precision in the presence of 20% measurement noise even. Finally, advantages and disadvantages of the method have been discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Operational Modal Analysis consists on estimate the modal parameters of a structure (natural frequencies, damping ratios and modal vectors) from output-only vibration measurements. The modal vectors can be only estimated where a sensor is placed, so when the number of available sensors is lower than the number of tested points, it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors): some sensors stay at the same position from setup to setup, and the other sensors change the position until all the tested points are covered. The permanent sensors are then used to merge the mode shape estimated at each setup (or partial modal vectors) into global modal vectors. Traditionally, the partial modal vectors are estimated independently setup by setup, and the global modal vectors are obtained in a postprocess phase. In this work we present two state space models that can be used to process all the recorded setups at the same time, and we also present how these models can be estimated using the maximum likelihood method. The result is that the global mode shape of each mode is obtained automatically, and subsequently, a single value for the natural frequency and damping ratio of the mode is computed. Finally, both models are compared using real measured data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contiene: Tomo 1 -- Tomo 2 -- Tomo 3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Teatro escojido de Calderón de la Barca.--Teatro escojido de Lope de Vega Carpio.--Juan Ruiz de Alarcón.--Tirso de Molina.--Francisco de Rojas.--Agustín Moreto.--Guillen de Castro.--Luis Vélez de Guevara.--J. Pérez de Montalvan.--Matos Fragoso.--L.F. de Moratín.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La información es un recurso trascendental en las economías actuales y los museos empiezan a darse cuenta de la importancia de difundir el conocimiento de sus colecciones a través del potente canal de comunicación que es la web. El saber acumulado por años de investigación, trasmitido mediante publicaciones en papel, empieza a fluir a través de la red, acercando al museo a los miles de usuarios que no van a poder visitarlo físicamente. El desprendimiento generoso de esa información tiene su lógica en el modelo del “potlatch digital”, en el que la visibilidad de la información hace aumentar su valor y proporciona prestigio a la institución que la ha puesto en circulación sin restricciones. El futuro de los servicios documentales de los museos, incluidas las bibliotecas y los archivos, está en facilitar esa apertura, pensar y trabajar para la comunidad global, obteniendo así su reconocimiento.