117 resultados para Roundness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic changes occur in plant food materials during drying significantly influence the macroscopic properties and quality factors of the dried food materials. It is very critical to study microstructure to understand the underlying cellular mechanisms to improve performance of the food drying techniques. However, there is very limited research conducted on such microstructural changes of plant food material during drying. In this work, Gala apple parenchyma tissue samples were studied using a scanning electron microscope for gradual microstructural changes as affected by temperature, time and moisture content during hot air drying at two drying temperatures: 57 ℃ and 70 ℃. For fresh samples, the average cellular parameter values were; cell area: 20000 μm2, ferret diameter: 160 μm, perimeter: 600 μm, roundness: 0.76, elongation: 1.45 and compactness: 0.84. During drying, a higher degree of cell shrinkage was observed with cell wall warping and increase in intercellular space. However, no significant cell wall breakage was observed. The overall reduction of cell area, ferret diameter and perimeter were about 60%, 40% and 30%. The cell roundness and elongation showed overall increments of about 5% and the compactness remained unchanged. Throughout the drying cycle, cellular deformations were mainly influenced by the moisture content. During the initial and intermediate stages of drying, cellular deformations were also positively influenced by the drying temperature and the effect was reversed at the final stages of drying which provides clues for case hardening of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose – Ideally, there is no wear in hydrodynamic lubrication regime. A small amount of wear occurs during start and stop of the machines and the amount of wear is so small that it is difficult to measure with accuracy. Various wear measuring techniques have been used where out-of-roundness was found to be the most reliable method of measuring small wear quantities in journal bearings. This technique was further developed to achieve higher accuracy in measuring small wear quantities. The method proved to be reliable as well as inexpensive. The paper aims to discuss these issues. Design/methodology/approach – In an experimental study, the effect of antiwear additives was studied on journal bearings lubricated with oil containing solid contaminants. The test duration was too long and the wear quantities achieved were too small. To minimise the test duration, short tests of about 90 min duration were conducted and wear was measured recording changes in variety of parameters related to weight, geometry and wear debris. The out-of-roundness was found to be the most effective method. This method was further refined by enlarging the out-of-roundness traces on a photocopier. The method was proved to be reliable and inexpensive. Findings – Study revealed that the most commonly used wear measurement techniques such as weight loss, roughness changes and change in particle count were not adequate for measuring small wear quantities in journal bearings. Out-of-roundness method with some refinements was found to be one of the most reliable methods for measuring small wear quantities in journal bearings working in hydrodynamic lubrication regime. By enlarging the out-of-roundness traces and determining the worn area of the bearing cross-section, weight loss in bearings was calculated, which was repeatable and reliable. Research limitations/implications – This research is a basic in nature where a rudimentary solution has been developed for measuring small wear quantities in rotary devices such as journal bearings. The method requires enlarging traces on a photocopier and determining the shape of the worn area on an out-of-roundness trace on a transparency, which is a simple but a crude method. This may require an automated procedure to determine the weight loss from the out-of-roundness traces directly. This method can be very useful in reducing test duration and measuring wear quantities with higher precision in situations where wear quantities are very small. Practical implications – This research provides a reliable method of measuring wear of circular geometry. The Talyrond equipment used for measuring the change in out-of-roundness due to wear of bearings indicates that this equipment has high potential to be used as a wear measuring device also. Measurement of weight loss from the traces is an enhanced capability of this equipment and this research may lead to the development of a modified version of Talyrond type of equipment for wear measurements in circular machine components. Originality/value – Wear measurement in hydrodynamic bearings requires long duration tests to achieve adequate wear quantities. Out-of-roundness is one of the geometrical parameters that changes with progression of wear in a circular shape components. Thus, out-of-roundness is found to be an effective wear measuring parameter that relates to change in geometry. Method of increasing the sensitivity and enlargement of out-of-roundness traces is original work through which area of worn cross-section can be determined and weight loss can be derived for materials of known density with higher precision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High levels of percentage green veneer recovery can be obtained from temperate eucalypt plantations. Recovery traits are affected by site and log position in the stem. Of the post-felling log traits studied, out-of-roundness was the best predictor of green recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 108 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 106 and 4108 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An “optical dark area” (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.

The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.

Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.

In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.

In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.

Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对光学测量投影仪测量圆形工件时圆度指标的图形表示,提出了一种几何投影变换方法,将原非单调区间的离散点投影在某单调区间内,在此单调区间内运用插值算法进行曲线拟合后,再对数据进行反向投影,使得原非单调区间内离散点光滑地连接起来,使圆度的图形表示更加合理。几何投影变换方法克服了一些用于连接离散数据点的插值算法不能在非单调区间使用的局限性,拓展了上述算法的应用范围。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EUS] Gaur egun produktu kimiko ugari erabiltzen dira nekazaritzaren produktibitatea emendatzeko eta modu honetan nekazaritza-produktuen etekin eta kalitatea hobetzeko asmoz. Hala ere, produktu kimiko hauek ekosisteman izan ditzaketen hilgarriak ez diren eraginak askotan ez dira kontuan hartzen. Azken urteotan osagai aktibo gisa glifosatoa duten herbiziden erabilera emendatu da. Lan honetan, glifosatoak ingurunean sor ditzakeen eraginak ikertu nahi izan dira, lurzoruan oso ugaria den Eisenia fetida zizarea adierazle biologiko gisa erabiliz. Esperimentuan 10 indibiduo helduz osaturiko 4 populazio erabili ziren, zeinak 14 egunez tratamendu desberdinetan ezarri ziren (kontrola, 50, 500 eta 5000 mg glifosato/Kg lur lehor). Glifosato kontzentrazio desberdinek ez zuten zizareen hilkortasunean edo pisuaren aldaketan eraginik izan. Hala ere, digestio-hodiaren epitelioaren morfologian eta azetilkolinesterasaren jardueran aldaketak behatu ziren. Glifosato kontzentrazio baxueneko ontziko zizareetan digestio-hodiko epitelioaren altueraren uniformetasun falta behatu zen, glifosato kontzentrazio ertaineko ontziko zizareetan orokorrean epitelioaren altuera txikiagoa zen, eta glifosato kontzentrazio handieneko ontziko zizareetan digestio-hodien borobiltasuna eta epitelioaren jarraitasuna galdu zen. Azetilkolinesterasaren jardueraren murrizpena behatu zen glifosatodun lurretan egondako zizareetan. Esperimentu honetan erabilitako glifosato kontzentrazioek zizareengan hilgarriak ez diren aldaketak sortzen dituzte, aztertutako biomarkatzaileak etorkizuneko ekotoxikologia testetan erabilgarriak izan daitezkeelarik.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation technique and scanning force microscopy have been used to measure directly the polyethylene modulus along the chain axis. Single crystals of polyethylene were employed in order to obtain well-aligned chain segments. To minimize effects of scanner creep, a Z scan rate of 3 Hz was employed. The "X Rotate" value of 25 degrees was selected to eliminate effects of lateral tip motion. The results were analyzed by the Oliver -Pharr method for which direct observation and measurement of the contact area are not required. Considering the influence of tip roundness on the projected contact area, the nanoindentation results were analyzed by the Sawa method. The chain modulus obtained from the thinner polyethylene single crystal sample was 204 +/- 21 GPa by the Oliver-Pharr method and 168 +/- 17 GPa by the Sawa method. The lower values than expected were due to substrate effects and anisotropy of chain deformation during nanoindentation. An extrapolation of the chain modulus obtained by various strains to zero nanoindentation eliminated the effect of substrate and anisotropy of chain deformation. The corresponding chain modulus obtained from the thicker sample was 278 GPa by the Oliver-Pharr method and 267 GPa by the Sawa method, respectively, in better agreement with the value of 340 Cpa determined theoretically. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based upon analyses of grain-size, rare earth element (REE) compositions, elemental occurrence phases of REE, and U-series isotopic dating, the sediment characteristics and material sources of the study area were examined for the recently formed deep-sea clays in the eastern Philippine Sea. The analytical results are summarized as follows. (1) Low accumulation rate, poor sorting and roundness, and high contents of grains coarser than fine silt indicate relatively low sediment input, with localized material source without long distance transport. (2) The REE Contents are relatively high. Shale-normalized patterns of REE indicate weak enrichment in heavy REE (HREE), Ce-passive anomaly, and Eu-positive anomaly. (3) Elemental occurrence phases of REE between the sediments with and without crust are similar. REE mainly concentrate in residual phase and then in ferromanganese oxide phase. The light REE (LREE) enrichment, Ce-positive anomaly, and Eu-positive anomaly occur in residual phase. Ferromanganese oxide phase shows the characteristics of relatively high HREE content and Ce-passive anomaly. (4) There are differences in each above mentioned aspect between the sediments with and without ferromanganese crust. (5) Synthesizing the above characteristics and source discriminant analysis, the study sediments are deduced to mainly result from the alteration of local and nearby volcanic materials. Continental materials transported by wind and/or river (ocean) flows also have minor contributions.